請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49874完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童國倫(Kuo-Lun Tung) | |
| dc.contributor.author | Tzu-Hao Chen | en |
| dc.contributor.author | 陳子豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:54:05Z | - |
| dc.date.available | 2021-08-31 | |
| dc.date.copyright | 2016-08-31 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | References
1. Feng, X. and R.Y. Huang, Liquid separation by membrane pervaporation: a review. Industrial & Engineering Chemistry Research, 1997. 36(4): p. 1048-1066. 2. Noble, R.D., Perspectives on mixed matrix membranes. Journal of Membrane Science, 2011. 378(1): p. 393-397. 3. Wijmans, J. and R. Baker, The solution-diffusion model: a review. Journal of membrane science, 1995. 107(1): p. 1-21. 4. Richard, W.B., Membrane technology and applications. John Wiley & Sons Ltd, 2004. 5. Heintz, A. and W. Stephan, A generalized solution—diffusion model of the pervaporation process through composite membranes Part II. Concentration polarization, coupled diffusion and the influence of the porous support layer. Journal of membrane science, 1994. 89(1-2): p. 153-169. 6. Lee, Y.M. and K. Won, Pervaporation separation of water-ethanol through modified polyacrylonitrile membranes. Polymer journal, 1990. 22(7): p. 578-586. 7. Wu, W., et al., Pervaporation of water and ethanol using a cellulose acetate butyrate membrane. Journal of colloid and interface science, 1993. 160(2): p. 502-504. 8. Deng, S., et al., A study of the pervaporation of isopropyl alcohol/water mixtures by cellulose acetate membranes. Journal of colloid and interface science, 1990. 136(1): p. 283-291. 9. Dubey, V., et al., Pervaporation of binary water–ethanol mixtures through bacterial cellulose membrane. Separation and Purification Technology, 2002. 27(2): p. 163-171. 10. Hunger, K., et al., Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes, 2012. 2(4): p. 727-763. 11. Kraftschik, B. and W.J. Koros, Cross-linkable polyimide membranes for improved plasticization resistance and permselectivity in sour gas separations. Macromolecules, 2013. 46(17): p. 6908-6921. 12. Cui, Z., et al., Ionic interactions between sulfuric acid and chitosan membranes. Carbohydrate Polymers, 2008. 73(1): p. 111-116. 13. Goncalves, V.L., et al., Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polimeros, 2005. 15(1): p. 6-12. 14. Yeom, C.-K. and K.-H. Lee, Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science, 1996. 109(2): p. 257-265. 15. Bolto, B., et al., Crosslinked poly (vinyl alcohol) membranes. Progress in Polymer Science, 2009. 34(9): p. 969-981. 16. Peng, F., et al., Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity. Chemistry of materials, 2005. 17(26): p. 6790-6796. 17. Vinh-Thang, H. and S. Kaliaguine, Predictive models for mixed-matrix membrane performance: a review. Chemical reviews, 2013. 113(7): p. 4980-5028. 18. Tang, Y.P., D.R. Paul, and T.S. Chung, Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol. Journal of Membrane Science, 2014. 458: p. 199-208. 19. Shen, Y., et al., Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2 Capture. ACS Sustainable Chemistry & Engineering, 2015. 3(8): p. 1819-1829. 20. Dharupaneedi, S.P., et al., Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Industrial & Engineering Chemistry Research, 2014. 53(37): p. 14474-14484. 21. Justin, R. and B. Chen, Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydrate polymers, 2014. 103: p. 70-80. 22. Huang, K., et al., A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014. 53(27): p. 6929-6932. 23. Huang, K., et al., High‐Efficiency Water‐Transport Channels using the Synergistic Effect of a Hydrophilic Polymer and Graphene Oxide Laminates. Advanced Functional Materials, 2015. 25(36): p. 5809-5815. 24. Cao, K., et al., Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014. 469: p. 272-283. 25. Zhao, J., et al., Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS applied materials & interfaces, 2016. 26. Cao, K., et al., Highly water-selective hybrid membrane by incorporating gC 3 N 4 nanosheets into polymer matrix. Journal of Membrane Science, 2015. 490: p. 72-83. 27. Zhao, J., et al., Manipulating the interfacial interactions of composite membranes via a mussel-inspired approach for enhanced separation selectivity. Journal of Materials Chemistry A, 2015. 3(39): p. 19980-19988. 28. Qunhui, G., H. Ohya, and Y. Negishi, Investigation of the permselectivity of chitosan membrane used in pervaporation separation II. Influences of temperature and membrane thickness. Journal of membrane science, 1995. 98(3): p. 223-232. 29. Zargar, V., M. Asghari, and A. Dashti, A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2015. 2(3): p. 204-226. 30. Ghazali, M., M. Nawawi, and R.Y. Huang, Pervaporation dehydration of isopropanol with chitosan membranes. Journal of Membrane Science, 1997. 124(1): p. 53-62. 31. Zielińska, K., W. Kujawski, and A.G. Chostenko, Chitosan hydrogel membranes for pervaporative dehydration of alcohols. Separation and purification technology, 2011. 83: p. 114-120. 32. Zhao, Z., et al., High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. Journal of membrane science, 2012. 394: p. 209-217. 33. Pandey, R.P. and V.K. Shahi, Functionalized silica–chitosan hybrid membrane for dehydration of ethanol/water azeotrope: Effect of cross-linking on structure and performance. Journal of Membrane Science, 2013. 444: p. 116-126. 34. Han, Y.-J., et al., Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. Journal of Membrane Science, 2014. 463: p. 17-23. 35. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 36. Mahmoud, K.A., et al., Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 2015. 356: p. 208-225. 37. Nair, R.R., et al., Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science, 2012. 335(6067): p. 442-444. 38. Boukhvalov, D.W., M.I. Katsnelson, and Y.-W. Son, Origin of Anomalous Water Permeation through Graphene Oxide Membrane. Nano Letters, 2013. 13(8): p. 3930-3935. 39. Chen, Y.-R., et al., Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Journal of Membrane Science, 2016. 514: p. 114-124. 40. Chang, K.-S., et al., Molecular dynamics simulations of polymeric structure and alcohol-membrane surface affinity of aromatic polyamide membranes. Journal of Membrane Science, 2011. 382(1): p. 30-40. 41. Chen, Y., et al., Counterintuitive gas transport through polymeric nanocomposite membrane: Insights from molecular dynamics simulations. The Journal of Physical Chemistry C, 2014. 118(48): p. 28179-28188. 42. Evans, J.D., et al., Feasibility of mixed matrix membrane gas separations employing porous organic cages. The Journal of Physical Chemistry C, 2014. 118(3): p. 1523-1529. 43. Abbott, L.J. and C.M. Colina, Atomistic structure generation and gas adsorption simulations of microporous polymer networks. Macromolecules, 2011. 44(11): p. 4511-4519. 44. Abbott, L.J., J.E. Hughes, and C.M. Colina, Virtual synthesis of thermally cross-linked copolymers from a novel implementation of polymatic. The Journal of Physical Chemistry B, 2014. 118(7): p. 1916-1924. 45. Abbott, L.J. and C.M. Colina, Formation of microporosity in hyper-cross-linked polymers. Macromolecules, 2014. 47(15): p. 5409-5415. 46. Jang, C., et al., Relative reactivity volume criterion for cross-linking: Application to vinyl ester resin molecular dynamics simulations. Macromolecules, 2012. 45(11): p. 4876-4885. 47. Larsen, G.S., et al., Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules, 2011. 44(17): p. 6944-6951. 48. Drewniak, S., et al., Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors. Sensors, 2016. 16(1): p. 103. 49. Yarovsky, I. and E. Evans, Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer, 2002. 43(3): p. 963-969. 50. Tan, Y.-q., Facile regulation of glutaraldehyde-modified graphene oxide for preparing free-standing papers and nanocomposite films. Chinese Journal of Polymer Science, 2013. 31(3): p. 399-406. 51. Ni, T., et al., Research on the crosslinking mechanism of polyacrylamide/resol using molecular simulation and X-ray photoelectron spectroscopy. Polymer journal, 2010. 42(5): p. 357-362. 52. Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364. 53. Rappe, A.K. and W.A. Goddard III, Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 1991. 95(8): p. 3358-3363. 54. Freund, R.M., The steepest descent algorithm for unconstrained optimization and a bisection line-search method. Journal of Massachusetts Institute of Technology. United States of america, 2004. 55. Nose, S., A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 1984. 52(2): p. 255-268. 56. Evans, D.J. and B.L. Holian, The nose–hoover thermostat. The Journal of chemical physics, 1985. 83(8): p. 4069-4074. 57. Andersen, H.C., Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics, 1980. 72(4): p. 2384-2393. 58. Connolly, M.L., Analytical molecular surface calculation. Journal of Applied Crystallography, 1983. 16(5): p. 548-558. 59. Bondi, A., van der Waals volumes and radii. The Journal of physical chemistry, 1964. 68(3): p. 441-451. 60. Hart, K.E., L.J. Abbott, and C.M. Colina, Analysis of force fields and BET theory for polymers of intrinsic microporosity. Molecular Simulation, 2013. 39(5): p. 397-404. 61. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938. 60(2): p. 309-319. 62. Hofmann, D., et al., Free volume distributions in ultrahigh and lower free volume polymers: comparison between molecular modeling and positron lifetime studies. Macromolecules, 2002. 35(6): p. 2129-2140. 63. Heuchel, M., et al., Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2008. 318(1): p. 84-99. 64. She, F.H., K. Tung, and L. Kong, Calculation of effective pore diameters in porous filtration membranes with image analysis. Robotics and Computer-Integrated Manufacturing, 2008. 24(3): p. 427-434. 65. Kanehashi, S. and K. Nagai, Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005. 253(1): p. 117-138. 66. Metropolis, N., et al., Equation of state calculations by fast computing machines. The journal of chemical physics, 1953. 21(6): p. 1087-1092. 67. Lundin, M., et al., Interactions between Chitosan and SDS at a Low-Charged Silica Substrate Compared to Interactions in the Bulk The Effect of Ionic Strength. Langmuir, 2008. 24(8): p. 3814-3827. 68. Silva, R., et al., Influence of β-radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2004. 15(4): p. 523-528. 69. Sing, K.S., Adsorption methods for the characterization of porous materials. Advances in colloid and interface science, 1998. 76: p. 3-11. 70. Shouman, M.A., S.A. Khedr, and A.A. Attia, Basic dye adsorption on low cost biopolymer: Kinetic and equilibrium studies. J. Appl. Chem, 2012. 2: p. 27-36. 71. Caraway, J., Selective filtration of cigarette smoke using chitosan derivatives. 2004, Google Patents. 72. Khalaf, M.N., Green Polymers and Environmental Pollution Control. 2016: CRC Press. 73. Agrawal, A.M., et al., Water distribution studies within microcrystalline cellulose and chitosan using differential scanning calorimetry and dynamic vapor sorption analysis. Journal of pharmaceutical sciences, 2004. 93(7): p. 1766-1779. 74. Mucha, M. and S. Ludwiczak, Water sorption by biodegradable chitosan/polylactide composites. Polish Chitin Society, Monograph, 2007. 12: p. 41-48. 75. Nawawi, M. and M. Ghazali, Diffusion Coefficient Estimations by Thin-Channel Column Inverse Gas Chromatography: Preliminary Experiments. Pertanika Journal of Science & Technology, 2000. 8(1): p. 1-18. 76. Volkov, V.I., et al., Self-diffusion of water-ethanol mixture in chitosan membranes obtained by pulsed-field gradient nuclear magnetic resonance technique. Journal of Membrane Science, 1998. 138(2): p. 221-225. 77. Alter, H., A critical investigation of polyethylene gas permeability. Journal of Polymer Science, 1962. 57(165): p. 925-935. 中文文獻 1. 張楷焄。“殘留溶劑對含氟聚亞醯胺薄膜自由體積與分離效能影響之分子模擬”,碩士論文,中原化工所,(2006) 2. 張楷焄。“材料組成與晶相結構對二氧化鋯基底固態電解質微結構與離子輸送影響之分子模擬解析” 博士論文,中原化工所,(2011) 3. 巫振誠。“熱重組高分子薄膜之結構特性與其氣體分離機制之分子模擬解析”,碩士論文,中原化工所,(2013) 4. 李福志。“二氧化矽/聚二甲基矽氧烷複合薄膜微結構與滲透蒸發效能之實驗與分子動態模擬解析” 碩士論文,中原化工所,(2014) 5. 陳奕叡。“自含微孔高分子薄膜之結構特性與其氣體分離機制之分子動態模擬解析” 碩士論文,台大化工所,(2015) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49874 | - |
| dc.description.abstract | 本研究利用一種結合分子動態力學與部分量子力學運算的多尺度模擬技術來研究經交聯之殼聚醣�氧化石墨烯複合薄膜的奈米結構特徵與輸送行為。近年來此種類有機�無機複合材料被認為可以克服傳統高分子膜在滲透蒸發分離效能上會遇到的權衡限制。殼聚醣薄膜材料上有許多親水官能基可以吸引極性分子,再加上用於複合的氧化石墨烯碎片具有多數高速水分子通道,能進一步提昇對水的親和性而增加滲透蒸發應用整體的分離效能,而藉由添加戊二醛產生交聯的結構則可以減緩薄膜操作時產生的澎潤效應。本論文利用模擬方法來探討以氧化石墨烯作為填充相對於薄膜結構及分子輸送行為所帶來的加乘性。
然而,由於複合薄膜內部複雜的結構,要有效率地建立模擬模型又能精確預測其效能仍然是一大挑戰。在此研究中我們結合了分子尺度與量子尺度建立一個新的模擬流程來有策略性地完成複合薄膜的模擬。同時我們也預先進行了純殼聚醣及經交聯之殼聚醣薄膜的模擬與研究來驗證我們的模擬方法,結果顯示模擬模型的性質和實驗數據吻合。最後我們藉由水、乙醇與異丙醇三種蒸汽分子於膜材內部之恆溫吸附與自擴散的研究評估並比較了不同薄膜的分離效能。 | zh_TW |
| dc.description.abstract | A multi-scale simulation techniques combined molecular dynamics (MD) and certain quantum mechanics calculations were used to investigate the nanostructural features and transport behavior of the crosslinked chitosan (CS)/graphene oxide (GO) mixed matrix membrane (MMM). In recent years this kind of composite membranes is regarded as a promising one to overcome the inevitable tradeoff of the pervaporation separation performance in polymeric materials. The CS membrane comprises a large quantity of hydrophilic groups to attract polar molecules, and the incorporated GO sheets with high speed water channels can further enhance the water affinity, improving the performance of pervaporation applications. The crosslinked structures are formed by adding the crosslinker glutaraldehyde (GA) to reduce the swelling effect. The synegestic effects of GO fillers on membrane structures and transport behavior are studied via simulation methods in this thesis.
However, it is still a challenge to construct MMMs model efficiently and to predict their performance precisely due to the complex structures. In this study we build a new scheme combining molecular scale and quantum scale to achieve the modeling works of MMMs strategically. Meanwhile, the pure CS polymeric membrane and the crosslinked CS membrane were also studied and modeled in advance to verify the simulation methods. As a result, the properties of simulated models agreed well with experimental works. Finally, we estimated and compare the separation performance of the different membrane models by exploring the adsorption isotherm and the self-diffusion process of water, ethanol, and isopropanol vapor molecules within the membrane materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:54:05Z (GMT). No. of bitstreams: 1 ntu-105-R03524035-1.pdf: 3503132 bytes, checksum: 2b2e8ce269945bfd05c20e894ad8bae1 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE SURVEY 3 2.2 The Pervaporation Separation Membranes 5 2.2.1 Membrane Materials 5 2.2.2 Polymeric Membranes 9 2.2.3 Mixed Matrix Membranes 11 2.3 Chitosan 16 2.4 Graphene Oxide 17 2.5 Molecular Simulation 18 2.5.1 Polymeric Membranes 18 2.5.2 Mixed Matrix Membranes 19 Chapter 3 THEORECTICAL METHOD 22 3.1 Model Constructions 23 3.2 Molecular Dynamics 29 3.2.1 Forcefield 29 3.2.3 Geometry Optimization 31 3.2.3 Periodic Boundary Condition 36 3.2.4 Ensembles 38 3.2.5 Dynamic Processes 39 3.3 Physical Properties Analyses 40 3.3.1 Dihedral Angle 40 3.3.2 Fractional Free Volume 41 3.3.3 Fractional Accessible Volume 42 3.3.4 Brunauer–Emmett–Teller Surface Area 43 3.3.5 Cavity Size Distribution 44 3.4 Separation Performance 45 3.4.1 Sorption 45 3.4.2 Diffusion 47 Chapter 4 RESULTS AND DISCUSSION 48 4.1 Nanostructure Characterizaitons 48 4.1.1 Model Constructions 48 4.1.2 Dihedral Angle 56 4.1.3 Fractional Free Volume 58 4.1.4 Fractional Accessible Volume 59 4.1.5 Surface Area 60 4.1.6 Cavity Size Distribution 61 4.2 Separation Properties 64 4.2.1 Solubility 64 4.2.2 Diffusivity 69 4.2.3 Permeability 72 4.2.4 Selectivity 74 Chapter 5 CONCLUSIONS 77 Chapter 6 FUTURE PROSPECT 79 REFERENCES 80 | |
| dc.language.iso | en | |
| dc.subject | 交聯 | zh_TW |
| dc.subject | 分子動態力學 | zh_TW |
| dc.subject | 滲透蒸發 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 有機無機複合膜 | zh_TW |
| dc.subject | Mixed Matrix Membranes | en |
| dc.subject | Crosslinking | en |
| dc.subject | First Principle Calculation | en |
| dc.subject | Pervaporation | en |
| dc.subject | Molecular Dynamics | en |
| dc.title | 殼聚醣�氧化石墨烯複合薄膜於奈米結構特徵及滲透蒸發效能之分子模擬解析 | zh_TW |
| dc.title | Investigation of Nanostructure Characterizations and Pervaporation Separation Performance of Cross-Linked Chitosan/Graphene Oxide Mixed Matrix Membranes via Molecular Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林祥泰(Shiang-Tai Lin),黃國楨(Kuo-Jen Hwang),莊清榮(Ching-Jung Chuang) | |
| dc.subject.keyword | 分子動態力學,滲透蒸發,有機無機複合膜,交聯,第一原理計算, | zh_TW |
| dc.subject.keyword | Molecular Dynamics,Pervaporation,Mixed Matrix Membranes,Crosslinking,First Principle Calculation, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201601094 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
