請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49853完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘文涵 | zh_TW |
| dc.contributor.advisor | Wen-Harn Pan | en |
| dc.contributor.author | 林筱磬 | zh_TW |
| dc.contributor.author | Hsiao-Ching Lin | en |
| dc.date.accessioned | 2021-06-15T11:52:40Z | - |
| dc.date.available | 2025-04-09 | - |
| dc.date.copyright | 2020-08-25 | - |
| dc.date.issued | 2020 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. de Baaij, J.H., J.G. Hoenderop, and R.J. Bindels, Magnesium in man: implications for health and disease. Physiol Rev, 2015. 95(1): p. 1-46.
2. Grober, U., J. Schmidt, and K. Kisters, Magnesium in Prevention and Therapy. Nutrients, 2015. 7(9): p. 8199-8226. 3. Jahnen-Dechent, W. and M. Ketteler, Magnesium basics. Clin Kidney J, 2012. 5(Suppl 1): i3-i14. 4. Alexander, R.T., J.G. Hoenderop, and R.J. Bindels, Molecular determinants of magnesium homeostasis: insights from human disease. J Am Soc Nephrol, 2008. 19(8): p. 1451-1458. 5. Vormann, J., Magnesium: nutrition and metabolism. Molecular aspects of medicine, 2003. 24(1-3): p. 27-37. 6. Swaminathan, R., Magnesium metabolism and its disorders. The Clinical Biochemist Reviews, 2003. 24(2): p. 47. 7. Witkowski, M., J. Hubert, and A. Mazur, Methods of assessment of magnesium status in humans: a systematic review. Magnes Res, 2011. 24(4): p. 163-180. 8. Reddy, S.T., S.S. Soman, and J. Yee, Magnesium Balance and Measurement. Adv Chronic Kidney Dis, 2018. 25(3): p. 224-229. 9. Arnaud, M.J., Update on the assessment of magnesium status. Br J Nutr, 2008. 99 Suppl 3: S24-36. 10. Fawcett, W., E. Haxby, and D. Male, Magnesium: physiology and pharmacology. British journal of anaesthesia, 1999. 83(2): p. 302-320. 11. NHS. Government dietary recommendations. Available from: https://www.nhs.uk/conditions/vitamins-and-minerals/others/ https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/618167/government_dietary_recommendations.pdf 12. 國民健康署. 國人膳食營養素攝取量修訂第七版. 2011; Available from: https://www.hpa.gov.tw/File/Attach/725/File_1674.pdf 13. Spritzler, F. 10 Magnesium-Rich Foods That Are Super Healthy. 2018 [cited 2020 2020/06/14]; Available from: https://www.healthline.com/nutrition/10-foods-high-in-magnesium 14. Volpe, S.L., Magnesium in disease prevention and overall health. Adv Nutr, 2013. 4(3): p. 378S-383S. 15. 潘文涵, et al. 國民營養健康狀況變遷調查. 2016. 臺灣公共衛生學會. 16. 潘文涵. 國民營養健康狀況變遷調查成果報告 2013-2016年. 2016; Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3999&pid=11145 17. Nielsen, F.H., Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res, 2018. 11: p. 25-34. 18. Mazur, A., et al., Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys, 2007. 458(1): p. 48-56. 19. Ferre, S., et al., Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta, 2010. 1802(11): p. 952-958. 20. Teragawa, H., et al., Magnesium causes nitric oxide independent coronary artery vasodilation in humans. Heart, 2001. 86(2): p. 212-216. 21. Altura, B.T. and B.M. Altura, Endothelium-dependent relaxation in coronary arteries requires magnesium ions. Br J Pharmacol, 1987. 91(3): p. 449-451. 22. Fonseca, F.A.H., et al., Dietary magnesium improves endothelial dependent relaxation of balloon injured arteries in rats. Atherosclerosis, 1998. 139(2): p. 237-242. 23. Iseri, L.T. and J.H. French, Magnesium: natures physiologic calcium blocker. The American heart journal, 1984. 108(1): p. 188-193. 24. Barbagallo, M. and L.J. Dominguez, Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys, 2007. 458(1): p. 40-47. 25. Gommers, L.M., et al., Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes, 2016. 65(1): p. 3-13. 26. Pham, P.C., et al., Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol, 2007. 2(2): p. 366-473. 27. Larsson, S.C. and A. Wolk, Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med, 2007. 262(2): p. 208-214. 28. Dong, J.Y., et al., Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care, 2011. 34(9): p. 2116-2122. 29. Fang, X., et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med, 2016. 14(1): p. 210. 30. Simental-Mendia, L.E., et al., A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res, 2016. 111: p. 272-282. 31. Ford, E.S., Serum magnesium and ischaemic heart disease: findings from a national sample of US adults. Int J Epidemiol, 1999. 28(4): p. 645-651. 32. Chiuve, S.E., et al., Dietary and plasma magnesium and risk of coronary heart disease among women. J Am Heart Assoc, 2013. 2(2): e000114. 33. Adebamowo, S.N., et al., Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. Am J Clin Nutr, 2015. 101(6): p. 1269-1277. 34. Larsson, S.C., N. Orsini, and A. Wolk, Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr, 2012. 95(2): p. 362-366. 35. Han, H., et al., Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J, 2017. 16(1): p. 26. 36. Dibaba, D.T., et al., The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials. Am J Clin Nutr, 2017. 106(3): p. 921-929. 37. Rosique-Esteban, N., et al., Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies. Nutrients, 2018. 10(2). 38. Kirkland, A.E., G.L. Sarlo, and K.F. Holton, The Role of Magnesium in Neurological Disorders. Nutrients, 2018. 10(6). 39. Pan, W.H., et al., Intake of potassium- and magnesium-enriched salt improves functional outcome after stroke: a randomized, multicenter, double-blind controlled trial. Am J Clin Nutr, 2017. 106(5): p. 1267-1273. 40. Baumgart, M., et al., Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement, 2015. 11(6): p. 718-726. 41. Kivipelto, M., F. Mangialasche, and T. Ngandu, Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol, 2018. 14(11): p. 653-666. 42. Richard, E., et al., Vascular risk factors and dementia–towards prevention strategies. Neth J Med, 2010. 68(10): p. 284-290. 43. Basheer, M.P., et al., A study of serum magnesium, calcium and phosphorus level, and cognition in the elderly population of South India. Alexandria Journal of Medicine, 2019. 52(4): p. 303-308. 44. Kieboom, B.C.T., et al., Serum magnesium is associated with the risk of dementia. Neurology, 2017. 89(16): p. 1716-1722. 45. Lo, K., et al., Relations of magnesium intake to cognitive impairment and dementia among participants in the Women's Health Initiative Memory Study: a prospective cohort study. BMJ Open, 2019. 9(11): e030052. 46. Ozawa, M., et al., Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the Hisayama Study. J Am Geriatr Soc, 2012. 60(8): p. 1515-1520. 47. Slutsky, I., et al., Enhancement of learning and memory by elevating brain magnesium. Neuron, 2010. 65(2): p. 165-177. 48. Lawlor, D.A., et al., Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008. 27(8): p. 1133-1163. 49. Davey Smith, G. and G. Hemani, Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 2014. 23(R1): R89-98. 50. Smith, G.D. and S. Ebrahim, 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol, 2003. 32(1): p. 1-22. 51. Davey Smith, G. and S. Ebrahim, What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ, 2005. 330(7499): p. 1076-1079. 52. Hingorani, A. and S. Humphries, Nature's randomised trials. The Lancet, 2005. 366(9501): p. 1906-1908. 53. Burgess, S., et al., Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology, 2017. 28(1): p. 30-42. 54. Hartwig, F.P., et al., Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol, 2016. 45(6): p. 1717-1726. 55. Lawlor, D.A., Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol, 2016. 45(3): p. 908-915. 56. Meyer, T.E., et al., Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet, 2010. 6(8). 57. Chang, X., et al., Genome-wide association study reveals two loci for serum magnesium concentrations in European-American children. Sci Rep, 2015. 5: p. 18792. 58. Chang, X., et al., Genome-wide association study of serum minerals levels in children of different ethnic background. PLoS One, 2015. 10(4): e0123499. 59. Tin, A., et al., Genetic loci for serum magnesium among African-Americans and gene-environment interaction at MUC1 and TRPM6 in European-Americans: the Atherosclerosis Risk in Communities (ARIC) study. BMC Genet, 2015. 16: p. 56. 60. Ware, E.B., et al., Genome-wide Association Study of 24-Hour Urinary Excretion of Calcium, Magnesium, and Uric Acid. Mayo Clin Proc Innov Qual Outcomes, 2019. 3(4): p. 448-460. 61. Corre, T., et al., Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. J Am Soc Nephrol, 2018. 29(1): p. 335-348. 62. Cheng, W.W., Q. Zhu, and H.Y. Zhang, Mineral Nutrition and the Risk of Chronic Diseases: A Mendelian Randomization Study. Nutrients, 2019. 11(2). 63. Larsson, S.C., S. Burgess, and K. Michaelsson, Serum magnesium levels and risk of coronary artery disease: Mendelian randomisation study. BMC Med, 2018. 16(1): p. 68. 64. Larsson, S.C., N. Drca, and K. Michaelsson, Serum Magnesium and Calcium Levels and Risk of Atrial Fibrillation. Circ Genom Precis Med, 2019. 12(1): e002349. 65. Larsson, S.C., et al., Serum magnesium and calcium levels in relation to ischemic stroke: Mendelian randomization study. Neurology, 2019. 92(9): e944-e950. 66. Helte, E., A. Akesson, and S.C. Larsson, Assessing Causality in Associations of Serum Calcium and Magnesium Levels With Heart Failure: A Two-Sample Mendelian Randomization Study. Front Genet, 2019. 10: p. 1069. 67. Sudlow, C., et al., UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 2015. 12(3). 68. Biobank, U. Genotyping and quality control of UK Biobank, a large-scale, extensively phenotyped prospective resource. 2015; Available from: http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/genotyping_qc.pdf 69. Marees, A.T., et al., A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res, 2018. 27(2): e1608. 70. Turner, S., et al., Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet, 2011. Chapter 1: Unit1-19. 71. Li, X., et al., Genetically determined serum urate levels and cardiovascular and other diseases in UK Biobank cohort: A phenome-wide mendelian randomization study. PLoS Med, 2019. 16(10): e1002937. 72. Millard, L.A.C., et al., Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet, 2019. 15(2): e1007951. 73. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007. 81(3): p. 559-575. 74. Burgess, S. and S.G. Thompson, Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol, 2013. 42(4): p. 1134-1144. 75. Health, N.I.o. LDlink. Available from: https://ldlink.nci.nih.gov/ 76. Biobank, U. Hospital Inpatient Data. 2019; Available from: http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.pdf 77. Kass, L., J. Weekes, and L. Carpenter, Effect of magnesium supplementation on blood pressure: a meta-analysis. Eur J Clin Nutr, 2012. 66(4): p. 411-418. 78. Zhang, X., et al., Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension, 2016. 68(2): p. 324-333. 79. Jee, S.H., et al., The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. American journal of hypertension, 2002. 15(8): p. 691-696. 80. Siervo, M., et al., Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr, 2015. 113(1): p. 1-15. 81. Sacks, F.M., et al., Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med, 2001. 344(1): p. 3-10. 82. Barbagallo, M. and L.J. Dominguez, Magnesium and type 2 diabetes. World J Diabetes, 2015. 6(10): p. 1152-1157. 83. Sarrafzadegan, N., et al., Magnesium status and the metabolic syndrome: A systematic review and meta-analysis. Nutrition, 2016. 32(4): p. 409-417. 84. Castellanos-Gutierrez, A., et al., Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J, 2018. 17(1): p. 114. 85. Zaakouk, A.M., M.A. Hassan, and O.A. Tolba, Serum magnesium status among obese children and adolescents. Egyptian Pediatric Association Gazette, 2016. 64(1): p. 32-37. 86. Burgess, S., S.G. Thompson, and C.C.G. Collaboration, Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol, 2011. 40(3): p. 755-764. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49853 | - |
| dc.description.abstract | 背景:
鎂是人體細胞內第二多的陽離子、參與超過600個酵素反應。鎂狀態也在體內扮演多個重要角色,包含神經傳導、肌肉收縮、血壓調節、血糖代謝等。過去的動物實驗、流行病學研究指出較高的鎂狀態對心血管代謝疾病、失智症等都有保護作用,然而其因果關係仍有待證實。 材料與方法: 我們使用英國人體生物資料庫的基因與臨床診斷資料執行孟德爾隨機分派研究,並從過往全基因體關聯分析(genome-wide association studies)找到影響鎂濃度之單核苷酸多型性(Single Nucleotide Polymorphism)作為工具變數代表鎂營養狀態,建立一個遺傳鎂傾向分數,由ICD-10診斷紀錄、HbA1c測量數值定義失智症、第二型糖尿病、缺血性心臟病、腦血管疾病四個疾病組別。本研究使用通過品質管理檢查的269169筆英國白人數據。 我們將所有樣本根據基因風險分數分成三組(T1, T2, T3),並針對四個疾病組別使用Cox比例風險模型(Cox proportional hazard model)進行存活分析,我們先將資料隨機分成三子群、重複三次發現-驗證(2:1)之分析流程,並將T1(0), T2(1), T3(2)視為連續變數並求得p for trend。針對失智症的分析進一步將干擾因子放入模型校正。此外,我們也將T1視為參考組,評估T2和T3得病風險,並將失智症分類後再作進一步分析。 結果: 將資料隨機分三子群並重複三次發現-驗證(2:1)之分析流程,發現鎂對失智症的保護趨勢,但是並沒有在每個子群中都顯著。然而則未觀察到遺傳鎂傾向分數和第二型糖尿病、缺血性心臟病及腦血管疾病有顯著關聯。我們發現較高的鎂狀態對失智症有保護作用,每增加1三分位單位,風險平均下降10% (HR=0.903, 95%CI: 0.839-0.973, p=0.007),且這樣的因果關係在控制了一些潛在干擾因子後更加顯著(HR=0.882, 95%CI: 0.815-0.955, p=0.0019)。失智罹患風險在遺傳鎂傾向分數在第2三分位和第3三分位分別比第1三分位低了15%和18% (T2: HR=0.853, 95%CI: 0.739-0.985, p=0.0306; T3: HR=0.82, 95%CI: 0.708-0.951, p=0.0084)。 結論: 我們觀察到遺傳預測的血清鎂較高者失智症發生之風險較低,然而三分驗證的結果可能由於工具變數解釋度偏低而稍不穩定,未來須進一步修正鎂營養狀態之工具變數,同時在不同群體、種族做研究以確認鎂對失智症之保護作用。 | zh_TW |
| dc.description.abstract | Background:
Magnesium is the second most abundant intracellular cation in human body, which involves in over six hundred enzymatic reactions. Magnesium plays critical roles in human body, involving neurotransmission, muscular contraction, blood pressure regulation, and glucose metabolism, just to name a few. Previous epidemiological studies have shown inverse associations of dietary and/or serum magnesium with cardio-metabolic diseases and neurologic disorders. However, it is not clear whether these associations are causal. Materials and Methods: We utilized genetic and clinical data from UK Biobank to conduct a Mendelian randomization study, in which genetic variants discovered from previous GWAS were used to construct genetic propensity score (GPS) as an instrumental variable of magnesium status. Dementia, type 2 diabetes, coronary artery disease, and cerebrovascular accident were defined by their ICD-10 diagnosis records as well as baseline HbA1c values. A total of 269,129 Caucasian data which passed the quality control check were included in the statistical analyses. Discovery-validation procedure was conducted by randomly splitting the data to three parts and checked if the relationship remains in the 1st part and in the 2nd and 3rd parts combined in 3 different ways. We divided the entire studied samples into 3 tertiles (T1, T2, T3) according to their GPSs. We then conducted survival analysis with Cox proportional hazard model on each of the 4 disease groups, treating T1(0), T2(1), T3(2) grouping as continuous variable and obtained p-value for trend with or without adjusting potential confounders. For dementia disease group, we further treated T1 as the reference group and estimated the hazard ratios of T2/T1 and T3/T1, respectively. We also analyzed dementia subgroups as endpoints. Results: We discovered a trend of protective effect on dementia, although not always significant when discovery-validation procedure was carried out with three random splitting data. However, no significant associations were found between GPS and the other three disease groups. We found higher level of magnesium-GPS was inversely associated with a lower risk of developing dementia. The hazard decreased by 10% when shifting up 1 tertile of GPS (HR=0.903, 95%CI: 0.839-0.973, p=0.007). This effect become more significant when potential confounders were adjusted in the model (HR=0.882, 95%CI: 0.815-0.955, p=0.0019). Also, the hazard is 15% and 18% lower in T2 and in T3 respectively, compared to T1. (T2: HR=0.853, 95%CI: 0.739-0.985, p=0.0306; T3: HR=0.82, 95%CI: 0.708-0.951, p=0.0084). Conclusion: We observed lower risk of dementia development when genetically determined serum magnesium level increases. However, the validation result of three random splitting data was unstable. This is probably because the instrumental variables only explained a very small percentage of the serum magnesium variance. Improving instrumental variables for magnesium nutrition is crucial for future research. It is warranted to carry out further confirmation studies in different populations or ethnic groups on the causal relation between magnesium and dementia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:52:40Z (GMT). No. of bitstreams: 1 U0001-1108202022142000.pdf: 2411090 bytes, checksum: 10ab91fd547ed987eb89e1a50184f746 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract V Chapter 1 Introduction 1 1.1 Magnesium status and human requirement 1 1.2 Previous studies on magnesium-disease relationships 3 1.2.1 Magnesium and glucose homeostasis 3 1.2.2 Magnesium and cardio-metabolic diseases 4 1.2.3 Magnesium and neurological disorders 5 1.3 Mendelian randomization study 7 1.4 Aim of this study 12 Chapter 2 Materials and Methods 13 2.1 Data source: UK Biobank 13 2.2 Participant exclusion criteria 13 2.3 MR approach and genetic instrumental variables of serum magnesium level 16 2.4 Classification of disease groups 17 2.5 Discovery-validation procedure with three random data splitting 19 2.6 Further analysis on dementia 20 Chapter 3 Results 21 3.1 Basic characteristics of participants included in the analysis 21 3.2 Discovery-validation procedure with three random data splitting 22 3.3 Further analysis on dementia 23 Chapter 4 Discussion 25 Chapter 5 Conclusion 31 Chapter 6 References 32 Chapter 7 Tables 44 Chapter 8 Appendix 49 8.1 ICD-10 codes for disease groups 49 8.2 Survival analysis – Kaplan-Meier plot 55 8.3 Certificate of Approval by IRB-BM Academia Sinica 56 | - |
| dc.language.iso | en | - |
| dc.subject | 心血管代謝疾病 | zh_TW |
| dc.subject | 孟德爾隨機分派試驗法 | zh_TW |
| dc.subject | 失智症 | zh_TW |
| dc.subject | 鎂 | zh_TW |
| dc.subject | cardio-metabolic diseases | en |
| dc.subject | Magnesium | en |
| dc.subject | Mendelian randomization | en |
| dc.subject | dementia | en |
| dc.title | 以孟德爾隨機分派試驗法探討鎂營養與心血管代謝疾病及失智症之因果關係 | zh_TW |
| dc.title | Mendelian Randomization Studies to Investigate The Causal Role of Magnesium Status on Cardio-metabolic Diseases and Dementia | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃彥棕;許珊菁 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Tsung Huang;Shan-Ching Hsu | en |
| dc.subject.keyword | 鎂,孟德爾隨機分派試驗法,失智症,心血管代謝疾病, | zh_TW |
| dc.subject.keyword | Magnesium,Mendelian randomization,dementia,cardio-metabolic diseases, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202004485 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2020-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-2.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
