請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49852完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | |
| dc.contributor.author | Liang-Chun Lin | en |
| dc.contributor.author | 林亮均 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:52:36Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | 1. Lindsey A. Torre, M., et al., Global Cancer Statistics, 2012. CA CANCER J CLIN, 2015. 65: p. 87-108.
2. Laursen, L., A preventable cancer. Nature Reviews Cancer, 2014. 516: p. S2-S3. 3. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005. 4. Villanueva, A., V. Hernandez-Gea, and J.M. Llovet, Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol, 2013. 10(1): p. 34-42. 5. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. Lancet, 2003. 362(9399): p. 1907-17. 6. Lencioni, R., P. Petruzzi, and L. Crocetti, Chemoembolization of Hepatocellular Carcinoma. Semin Intervent Radiol, 2013. 30(1): p. 3-11. 7. Wilhelm, S., et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov, 2006. 5(10): p. 835-44. 8. Xie, B., D.H. Wang, and S.J. Spechler, Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci, 2012. 57(5): p. 1122-9. 9. Zhai, B. and X.Y. Sun, Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013. 5(7): p. 345-52. 10. Torti, D. and L. Trusolino, Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med, 2011. 3(11): p. 623-36. 11. Chen, K.F., et al., Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther, 2011. 337(1): p. 155-61. 12. van Malenstein, H., et al., Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett, 2013. 329(1): p. 74-83. 13. Marijon, H., et al., Epithelial-to-mesenchymal transition and acquired resistance to sunitinib in a patient with hepatocellular carcinoma. J Hepatol, 2011. 54(5): p. 1073-8. 14. Kohno, K., et al., The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays, 2003. 25(7): p. 691-8. 15. Lasham, A., et al., YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem J, 2013. 449(1): p. 11-23. 16. Kosnopfel, C., T. Sinnberg, and B. Schittek, Y-box binding protein 1--a prognostic marker and target in tumour therapy. Eur J Cell Biol, 2014. 93(1-2): p. 61-70. 17. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 18. Khan, M.I., et al., YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget, 2014. 5(9): p. 2462-74. 19. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 2009. 28(1-2): p. 15-33. 20. Blanchoin, L., et al., Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev, 2014. 94(1): p. 235-63. 21. Jurchott, K., et al., YB-1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem, 2003. 278(30): p. 27988-96. 22. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39. 23. Wu, Y. and B.P. Zhou, Snail: More than EMT. Cell Adhesion & Migration, 2010. 4(2): p. 199-203. 24. Cummins, P.M., Occludin: one protein, many forms. Mol Cell Biol, 2012. 32(2): p. 242-50. 25. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 26. Cooper, J.A., Effects of cytochalasin and phalloidin on actin. J Cell Biol, 1987. 105(4): p. 1473-8. 27. Eliseeva, I.A., et al., Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc), 2011. 76(13): p. 1402-33. 28. Johnson, H.E., et al., F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling. J Cell Biol, 2015. 208(4): p. 443-55. 29. Wang, W., R. Eddy, and J. Condeelis, The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer, 2007. 7(6): p. 429-40. 30. Yauch, R.L., et al., Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res, 2005. 11(24 Pt 1): p. 8686-98. 31. Chow, A.K., et al., The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One, 2013. 8(11): p. e78675. 32. Voulgari, A. and A. Pintzas, Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta, 2009. 1796(2): p. 75-90. 33. Lasham, A., et al., The Y-box-binding protein, YB1, is a potential negative regulator of the p53 tumor suppressor. J Biol Chem, 2003. 278(37): p. 35516-23. 34. Evdokimova, V., et al., Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle, 2009. 8(18): p. 2901-6. 35. Zhang, H., et al., Prostaglandin E2 promotes hepatocellular carcinoma cell invasion through upregulation of YB-1 protein expression. Int J Oncol, 2014. 44(3): p. 769-80. 36. Evdokimova, V., et al., Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell, 2009. 15(5): p. 402-15. 37. Krasilnikov, M.A., Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc), 2000. 65(1): p. 59-67. 38. Qian, Y., et al., PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol, 2004. 286(1): p. C153-63. 39. Du, F., et al., Acquisition of paclitaxel resistance via PI3Kdependent epithelialmesenchymal transition in A2780 human ovarian cancer cells. Oncol Rep, 2013. 30(3): p. 1113-8. 40. Cain, R.J. and A.J. Ridley, Phosphoinositide 3-kinases in cell migration. Biol Cell, 2009. 101(1): p. 13-29. 41. El-Sibai, M., et al., Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells. J Cell Sci, 2007. 120(Pt 19): p. 3465-74. 42. Yamazaki, D., S. Kurisu, and T. Takenawa, Regulation of cancer cell motility through actin reorganization. Cancer Sci, 2005. 96(7): p. 379-86. 43. Heasman, S.J. and A.J. Ridley, Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol, 2008. 9(9): p. 690-701. 44. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol, 2008. 9(6): p. 446-54. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49852 | - |
| dc.description.abstract | 肝癌是全世界最致命的惡性腫瘤之一,其中肝細胞癌 (hepatocellular carcinoma , HCC)佔了 70 %-85 %的發生率,為最常見的肝癌。針對晚期肝癌的患者,標靶藥物蕾莎瓦 (sorafenib)為第一線的治療策略,可以有效地延長晚期肝癌病 人的存活期。蕾莎瓦是一種多重激酶抑制劑,透過阻擋 VEGFR, PDGFR, RAF
及 MAPK 訊息傳遞路徑以抑制腫瘤生長及血管新生。但是近來發現接受蕾莎瓦治療 的病患有逐漸出現後天抗藥性 (acquired resistance)的隱憂。
為了要了解蕾莎瓦抗藥性的機制,本實驗室建立了對蕾莎瓦有抗藥性的肝細 胞癌細胞株-Huh7R。透過磷酸化蛋白質體學的分析,發現 YB-1 (Y-Box binding protein 1)在 Huh7R 細胞中會經由 AKT 活化而大量表現。YB-1 是一種轉錄因子, 在許多癌症中會大量活化。它會透過調控某些基因表現進而促進細胞增生及表皮 細胞間質化 (epithelial-mesenchymal transition, EMT)。 接著我們利用小髮夾 RNA (short hairpin RNA, shRNA)抑制 Huh7R 細胞中的 YB-1 表現。發現 knockdown YB-1 會抑制細胞移動及侵襲能力,除此之外細胞型 態也會從拉長的紡錘狀變回表皮細胞的外型。經螢光染色後透過共軛焦螢光顯微 鏡觀察肌動蛋白纖維的排列變化,發現 knockdown YB-1 會抑制絲狀偽足的表現。 細胞型態的改變及絲狀偽足 (filopodia)的形成對於細胞的移動能力及 EMT 是很重 要的,因此進一步想探討 YB-1 會透過調控什麼基因促進絲狀偽足的生成。 我們發現在 Huh7R 細胞中 YB-1 會進核促進 PI3K 及 EGFR 表現。先前的研究 已知PI3K會透過活化GTPase Rho家族蛋白促進肌動蛋白纖維 (actin filament)的重 新排列。在本篇研究中阻斷 Huh7R 細胞的 PI3K 活性會抑制絲狀偽足的生成,而 knockdown YB-1 會減少活化態 Cdc42 的表現。我們推測在對蕾莎瓦有抗藥性的肝 癌細胞中,YB-1 會透過促進 PI3K 表現以活化 Cdc42,進而增進絲狀偽足的生成。 總結以上結果,我們探討了 Huh7R 細胞中 YB-1 促進絲狀偽足的生成及 EMT 的機制,顯示出 YB-1 對於癌細胞侵襲力的重要性。因此 YB-1 可作為一個治療標的,以解決蕾莎瓦抗藥性肝癌細胞轉移能力增強的隱憂。 | zh_TW |
| dc.description.abstract | Liver cancer is one of the most lethal malignancy in worldwide and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer incidences. For advanced HCC, targeted therapy sorafenib is a first-line treatment that can effectively prolong overall survival of late stage HCC patients. Sorafenib is a multi-kinase inhibitor that suppresses tumor progression and angiogenesis through blocking VEGFR, PDGFR, RAF
and MAPK signaling pathways. However, acquired resistance has been concerned as a challenge to sorafenib treatment.
We developed the sorafenib resistant hepatoma cell line Huh7R to understand the mechanism of sorafenib resistance. Based on phosphoproteomics analysis, we found Y-Box binding protein 1(YB-1) is highly expressed and activated by AKT in Huh7R cells. YB-1 is a transcription factor, which is highly activated in cancers. It can regulate gene expression resulted cell proliferation and epithelial-mesenchymal transition (EMT). To understand the role of YB-1 in Huh7R cells, we used shRNA to knockdown YB-1 in Huh7R cells and found that knockdown YB-1 suppressed the ability of cell migration and cell invasion. In addition, the morphology was changed from spindle type to epithelial-like cell in YB-1 knockdown cells. Through confocal microscopy, we observed that the expression of filopodia was repressed in YB-1 knockdown cells. Morphology changes and the formation of filopodia are essential for cell to increase the ability of cell migration and EMT. We also found that YB-1 can translocate into nucleus inducing PI3K and EGFR expression. It is reported that PI3K can induce actin rearrangement through activating GTPase Rho family protein. In our study, inhibiting PI3K activity reduced filopodia formation in Huh7R cells and the activity of Cdc42 was lower in YB-1 knockdown cells. We presumed that YB-1 would induce PI3K-mediated Cdc42 activation and promote filopodia formation and EMT in Huh7R cells. In conclusion, we investigated the mechanism of YB-1 promoting filopodia formation and EMT in Huh7R cells. It reveals the importance of YB-1 in cell invasion. Therefore YB-1 can be a therapeutic target to overcome the problem of metastatic potential in sorafenib resistant HCC cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:52:36Z (GMT). No. of bitstreams: 1 ntu-105-R03442022-1.pdf: 28304855 bytes, checksum: af04f6f40ccd7a665e76f3993788989e (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 I
謝誌 II 摘要 III Abstract V 縮寫 VII 目錄 IX 圖目錄 XII 附錄目錄 XIII 第一章 導論 1 第一節 肝癌 (Liver cancer) 1 1.1 肝癌之流行病學 1 1.2 肝癌的致癌因子及癌化過程 2 1.3 肝癌的分期 2 1.4 肝癌的臨床治療 3 第二節 蕾莎瓦 (Sorafenib) 4 2.1 作用機制 4 2.2 蕾莎瓦抗藥性的產生 5 第三節 DNA結合蛋白Y-box binding protein 1 (YB-1) 7 3.1 YB-1的介紹 7 3.2 YB-1對癌症之功能影響 8 3.3 YB-1影響癌細胞的侵襲及轉移能力 8 第四節 表皮細胞間質化與細胞骨架的排列 9 第五節 研究動機 10 第二章 實驗材料 12 第一節 細胞株 12 第二節 儀器與裝置 12 第三節 酵素 13 第四節 抗體 13 第五節 試劑組與藥品 14 第六節 分析軟體 16 第三章 實驗方法 17 第一節 肝細胞癌細胞株的培養 17 1.1 培養基 (Medium)配置 17 1.2 細胞的培養 17 1.3 細胞計數 17 第二節 蛋白質分析法 17 2.1 細胞樣品處理 17 2.2 蛋白質濃度測定 (BCA protein assay) 18 2.3 十二烷基硫酸鈉-聚丙烯醯胺膠體電泳分析 (SDS-PAGE) 19 2.4 西方墨點法(Western blotting) 21 第三節 細胞存活率分析 (MTT assay) 23 第四節 螢光染色(Fluorescent staining) 23 4.1 免疫螢光染色 (Immunofluorescence staining) 23 4.2 細胞骨架螢光染色 (Fluorescence staining of cytoskeleton) 24 第四章 實驗結果 26 第一節 YB-1在Huh7與Huh7R細胞之間的表現差異 26 第二節 YB-1對細胞生理之功能分析 (Functional analysis) 26 第三節 YB-1對Huh7R細胞的形態及EMT能力的影響 27 第四節 YB-1對於絲狀偽足生成的影響 28 第五節 YB-1調控PI3K和EGFR在Huh7R細胞的表現 29 5.1 YB-1進核調控PI3K及EGFR的轉錄 29 5.2 PI3K和EGFR在Huh7R細胞中的表現差異 29 第六節 PI3K 促進 Huh7R 細胞中絲狀偽足的生成 29 第七節 PI3K在Huh7R細胞中受到EGFR調控 30 第八節 Huh7R細胞中GTPase Cdc42的表現 30 第九節 Huh7R細胞中YB-1促進絲狀偽足生成之機制 31 第五章 討論 32 第一節 抗藥性癌細胞與EMT之間的關係 32 第二節 YB-1對於EMT的影響 33 第三節 PI3K對於細胞骨架排列的重要性 34 第四節 GTPase Rho家族蛋白質 (GTPase Rho protein family) 35 第五節 結語與未來展望 36 第六章 參考文獻 38 圖表 43 附錄 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | Y-Box binding protein 1 | zh_TW |
| dc.subject | 表皮細胞間質化 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 絲狀偽足 | zh_TW |
| dc.subject | PI3K | zh_TW |
| dc.subject | 蕾莎瓦抗藥性 | zh_TW |
| dc.subject | Sorafenib resistance | en |
| dc.subject | Epithelial-mesenchymal transition | en |
| dc.subject | Filopodia | en |
| dc.subject | PI3K | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | Y-Box binding protein 1 | en |
| dc.title | YB-1 促進 PI3K 及 EGFR 激酶表現並引發蕾莎瓦抗藥性
肝癌細胞之絲狀偽足生成及表皮細胞間質化 | zh_TW |
| dc.title | YB-1 induces PI3K and EGFR expression resulted filopodia formation and epithelial-mesenchymal transition in sorafenib resistant hepatocellular carcinoma cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡丰喬,潘思樺 | |
| dc.subject.keyword | 肝細胞癌,蕾莎瓦抗藥性,Y-Box binding protein 1,PI3K,絲狀偽足,表皮細胞間質化, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma,Sorafenib resistance,Y-Box binding protein 1,PI3K,Filopodia,Epithelial-mesenchymal transition, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201602370 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 27.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
