請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃國倉(Kuo-Tsang Huang) | |
| dc.contributor.author | Cheng-Hang Liu | en |
| dc.contributor.author | 劉承翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:52:16Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | 1. Koehler, M., Green facades-a view back and some visions. Urban Ecosystems, 2008. 11(4): p. 423-436.
2. Manso, M. and J. Castro-Gomes, Green wall systems: A review of their characteristics. Renewable & Sustainable Energy Reviews, 2015. 41: p. 863-871. 3. Urriola, H., Vertical wall garden, 2010, Google Patents. 4. Taber, S.M., Modular wall planters, 2010, Google Patents. 5. Deutsch-Aboulmahassine, E.D., Modular, wall-mounted plant growing system, 2009, Google Patents. 6. Fukuzumi, Y., Plant growing method for greening wall surfaces, 1996, Google Patents. 7. Chen, Q., B. Li, and X. Liu, An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, 2013. 61: p. 298-307. 8. Olivieri, F., L. Olivieri, and J. Neila, Experimental study of the thermal-energy performance of an insulated vegetal facade under summer conditions in a continental mediterranean climate. Building and Environment, 2014. 77: p. 61-76. 9. Susorova, I., P. Azimi, and B. Stephens, The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Building and Environment, 2014. 76: p. 113-124. 10. Liang, T.C., W.N. Hien, and S.K. Jusuf, Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landscape and Urban Planning, 2014. 127: p. 52-64. 11. Wong, N.H., et al., Energy simulation of vertical greenery systems. Energy and Buildings, 2009. 41(12): p. 1401-1408. 12. Mazzali, U., et al., Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment, 2013. 64: p. 57-66. 13. Carlos, J.S., Simulation assessment of living wall thermal performance in winter in the climate of Portugal. Building Simulation, 2015. 8(1): p. 3-11. 14. Flores Larsen, S., C. Filippín, and G. Lesino, Modeling double skin green façades with traditional thermal simulation software. Solar Energy, 2015. 121: p. 56-67. 15. Djedjig, R., E. Bozonnet, and R. Belarbi, Analysis of thermal effects of vegetated envelopes: Integration of a validated model in a building energy simulation program. Energy and Buildings, 2015. 86: p. 93-103. 16. Standardization, I.O.f., Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. 2005: International Organization for Standardization. 17. Gates, D.M., Transpiration and leaf temperature. Annual Review of Plant Physiology, 1968. 19(1): p. 211-238. 18. Allen, R.G., et al., FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998: p. 26-40. 19. Dewitt, I. and 仲. 張, 熱傳遞. 1997, 臺北市: 新科技總經銷. 20. Kontoleon, K.J. and E.A. Eumorfopoulou, The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Building and Environment, 2010. 45(5): p. 1287-1303. 21. Stec, W.J., A.H.C. van Paassen, and A. Maziarz, Modelling the double skin façade with plants. Energy and Buildings, 2005. 37(5): p. 419-427. 22. Frankenstein, S. and G. Koenig, FASST vegetation models, 2004, DTIC Document. 23. Sailor, D.J., A green roof model for building energy simulation programs. Energy and Buildings, 2008. 40(8): p. 1466-1478. 24. Zhang, J.Q., et al., A heat balance model for partially vegetated surfaces. Infrared Physics & Technology, 1997. 38(5): p. 287-294. 25. 邱靜怡, 綠屋頂能量與水文模式發展及本土化參數之研究, in 臺灣大學生物環境系統工程學研究所學位論文2012, 臺灣大學. p. 1-96. 26. Malys, L., M. Musy, and C. Inard, A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Building and Environment, 2014. 73: p. 187-197. 27. Deardorff, J.W., EFFICIENT PREDICTION OF GROUND SURFACE-TEMPERATURE AND MOISTURE, WITH INCLUSION OF A LAYER OF VEGETATION. Journal of Geophysical Research-Oceans and Atmospheres, 1978. 83(NC4): p. 1889-1903. 28. Stanghellini, C., Mixed convection above greenhouse crop canopies. Agricultural and Forest Meteorology, 1993. 66(1): p. 111-117. 29. Campbell, G.S. and J.M. Norman, Introduction to environmental biophysics. 1998, New York: Springer. 30. Bonan, G.B., Ecological climatology : concepts and applications. 2002, New York: Cambridge University Press. 31. Cronshey, R., Urban hydrology for small watersheds, 1986, US Dept. of Agriculture, Soil Conservation Service, Engineering Division. 32. Haith, D.A., R. Mandel, and R.S. Wu, GWLF, generalized watershed loading functions, version 2.0, user’s manual. Dept. of Agricultural & Biological Engineering, Cornell University, Ithaca, NY, 1992. 33. Feustel, I.C. and H.G. Byers, The comparative moisture-absorbing and moisture-retaining capacities of peat and soil mixtures. 1936: US Dept. of Agriculture. 34. Hanan, J.J., Greenhouses: Advanced Technology for Protected Horticulture, 1997, CRC Press 35. DOE, U., EnergyPlus, input output reference: The encyclopaedic reference to energyplus input and output. USA, Department of Energy, 2010. 36. Gregorich, E.G., Soil and environmental science dictionary. 2002, Boca Raton: CRC Press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49847 | - |
| dc.description.abstract | 台灣自產能源缺乏,一間設計良好的建物可以有效減少日常耗能,而日常使用所消耗的能源遠高於營建所需之耗能。夏日空調用電占總用電約40%,因此若建物設計良好藉由減少冷氣使用而有效減少建物之耗能。建物立體綠化是建物完成過後有效節省空調耗能的手段之一,建物立體綠化包含綠屋頂與植栽牆。近年來綠屋頂與植栽牆系統皆有許多研究:在植栽牆實驗方面針對季節、天氣、日夜、覆蓋率探討在熱溼氣候中的研究較少被提及;植栽牆模擬研究方面,大多研究經由許多假設及簡化將植栽牆轉至為其他物件。對此本研究目的是藉由全尺度實驗屋裝設以常綠植物組成的植栽牆,進行不同季節、天氣、覆蓋率、日夜為變因的實驗;並針對建立植栽牆基於能量及水量平衡建立物理模型再以全尺度實驗屋驗證。在實驗觀察結果上,日間使用之建物,在夏季可以增加27%左右的熱舒適滿意度,而冬季卻會降低5%左右的熱舒適滿意度,因此若採用落葉植物可能會有較佳的效益。至於夜間使用的建物,熱舒適滿意度的影響均在5%以下,不論增加或降低,故若有經費因素考量,可不必裝設植栽牆。在模擬驗證上,植栽層表面溫度模擬結果表現最佳,標準化方均根誤差為7.3%;含水率表現結果最差標準化方均根誤差為19.8%。 | zh_TW |
| dc.description.abstract | A shortage of domestic energy production has always been a concern in Taiwan. A well-designed building may effectively alleviate this problem for the daily use of a building outcompetes all other aspects in energy consumption such as construction. Statistics has shown that about 40% of energy consumption in summer can be attributed to air conditioning. Therefore, it is very likely to reduce the total energy consumption if a building is well-designed for humans and the air conditioning can be less frequently operated. Building greenery, including green roofs and green walls, is one of the most effective ways to save energy from the excess use of air conditioning. Most of the recent studies focus on green roofs and green walls. However, of the green-wall studies, few experiment mentioned the effects from seasons, weather, day-and-night and coverage. Additionally, oversimplification of parameters by certain assumptions has usually been made in the studies of green-wall simulation. To assess the effects of environmental factors and coverage on green walls, a full scale study house is set with an evergreen plant (Asparagus sprengeri)-covered green wall for experiments; to build the model with physical based energy and water balance and validate it.. The results show a 27% increase of the Predicted Percentage of Dissatisfied in summer but a 5% decrease in winter in the house with the green wall used in day time. As a result, if the green walls adopt deciduous plants rather than the evergreens, the benefits of thermal comfort could be better. For the buildings used in night time, green walls show only about 5% increase or decrease of the Predicted Percentage of Dissatisfied, implying that, if there is short of funding, it is not necessary to set green wall for these buildings. The results of simulation show that the surface temperatures of foliage layer is the paremeter most close to the experiments, with the normalized root-mean-square error (NRMSE) only 7.3%; water content simulated is the most deviant, with the NRMSE up to 19.8%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:52:16Z (GMT). No. of bitstreams: 1 ntu-105-R03622037-1.pdf: 6305137 bytes, checksum: d49c25ce5202d9641cef5faa1d4dc1af (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝辭 II
摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 IX 第1章 緒論 1 1 1. 研究動機與目的 1 1 2. 研究章節及流程 2 第2章 文獻回顧 3 第3章 植栽牆對室內外效益之實驗研究 6 3 1. 熱舒適性理論 6 3 2. 植栽牆架設組成 9 3 3. 實驗儀器 16 3 5. 現地實驗 22 3 6. 實測實驗結果與討論 31 第4章 植栽牆模式之建立與驗證 44 4 1. 模式理論 44 4 2. 模式假設 50 4 3. 模式流程 51 4 4. 模式架構 51 4 5. 植栽與土外表面模式 56 4 6. 土體到鐵皮表面模式 65 4 7. 降雨逕流模型 69 4 8. 數值解 72 4 9. 各參數實驗與推估 79 4 10. 模式驗證 91 4 11. 小結 94 第5章 結論與建議 95 5 1. 結論 95 5 2. 建議 95 第6章 參考文獻 96 附錄 98 1. 中選日戶外氣象資料 98 2. 室內空氣溫度歷線圖 106 3. 室內平均輻射溫度歷線圖 110 4. 室內PMV及PPD歷線圖 114 5. 全半覆蓋歷線圖 123 6. 空調節能歷線圖 129 7. 戶外鐵皮表面溫度歷線圖 131 8. 戶外空氣溫度歷線圖 134 | |
| dc.language.iso | zh-TW | |
| dc.subject | 能量平衡 | zh_TW |
| dc.subject | 植栽牆 | zh_TW |
| dc.subject | 熱舒適 | zh_TW |
| dc.subject | PPD-PMV 模式 | zh_TW |
| dc.subject | 全尺度實驗 | zh_TW |
| dc.subject | PPD-PMV model | en |
| dc.subject | Energy Balance | en |
| dc.subject | Full-Scale Experiments | en |
| dc.subject | Green Wall | en |
| dc.subject | Thermal Comfort | en |
| dc.title | 應用全尺度實驗屋探討植栽牆熱性能之研究 | zh_TW |
| dc.title | Studies on Thermal Performance of Green Wall with Full-Scale Experimental House | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃瑞隆(Ruey-Lung Hwang),王仁俊(Jen-Chun Wang) | |
| dc.subject.keyword | 植栽牆,熱舒適,PPD-PMV 模式,全尺度實驗,能量平衡, | zh_TW |
| dc.subject.keyword | Green Wall,Thermal Comfort,PPD-PMV model,Full-Scale Experiments,Energy Balance, | en |
| dc.relation.page | 136 | |
| dc.identifier.doi | 10.6342/NTU201602375 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
