請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫岩章 | |
| dc.contributor.author | Zheng-Rong Lai | en |
| dc.contributor.author | 賴政融 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:51:27Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | 1. 中華民國植物病理學會。2002。臺灣植物病害名彙。第四版。中華民國植物病理學會出版。386 頁
2. 安寶貞。2002。植物疫病菌的診斷鑑定技術。植物重要防檢疫疫病診斷鑑定技術研討會專刊。111-120頁。 3. 吳安娜。2005。嗅到春天的氣息臺灣山櫻花。農業世界雜誌 259:16 – 18。 4. 吳孟玲。2015。林木疫情監測及防治體系及重大病蟲害網路綜合管理研究。農委會林業試驗所。 5. 吳敏菁。2010。種櫻達人勤研發 栽出獨家垂櫻。中國時報 3 月 22 日。社會新聞 C2版。 6. 李怡潔。2014。櫻花簇葉病分子檢測技術建立與檢疫應用。國立臺灣大學植物病理與微生物學研究所碩士論文。 7. 凌千里。1992。臺灣的原生櫻花。臺灣省農業試驗所技術服務 12:13 – 16。 8. 孫岩章。2004。環境污染病害之診斷與因果之鑑識。植物疫病診斷鑑定技術研習會論文集。國立中興大學。2004 年8 月31日,臺中市。 9. 孫岩章。2005。植物醫師手冊。國立臺灣大學植物病理學系。200 頁。 10. 孫岩章。2009。臺大校園百大老樹健康檢查及初級照護第一期工作計畫報告。國立臺灣大學植物醫學研究中心。 11. 孫岩章。2013。環境污染與公害鑑定。第三版。科技圖書公司。 12. 孫岩章。2015。103 年臺中市受保護樹木健康檢查初勘工作期末報告。國立臺灣大學植物醫學研究中心。 13. 孫岩章。2015。臺大樹木褐根病預防性防治第一期試驗計畫期末報告。國立臺灣大學植物醫學研究中心。 14. 孫岩章。2015。臺北市 374 座鄰里公園樹木健康檢查計畫期末報告。國立臺灣大學植物醫學研究中心。 15. 孫岩章。2015。談樹木褐根病之預防性及治療性藥劑注射防治策略。樹木疫病蟲害之醫療及健檢研討會論文集。2015年11月14~15日。臺灣植物及樹木醫學學會。 16. 孫岩章、蕭文偉。2004。臺灣中部 2002 年杉木萎凋非生物流行病學成因之探討。中華民國植物病理學會九十三年年會論文。 17. 孫岩章。1997。一般非傳染性病害之診斷。植物病原鑑定與病害診斷研習會專刊。中華民國植物病理學會。pp. 153-161。 18. 張洲府。2016。平地櫻花的推手。http://library.taiwanschoolnet.org/cyberfair2013/htm. 19. 梁臻穎、孫岩章。2015。颱風造成都市樹木倒塌原因之分析及其預防。樹木疫病蟲害之醫療及健檢研討會論文集。2015年11月14~15日。臺灣植物及樹木醫學學會。 20. 陳文華、洪明毅、孫岩章。2015。有關珍貴老樹染患褐根病後救治新策略之探討。樹木疫病蟲害之醫療及健檢研討會論文集。2015年11月14~15日。臺灣植物及樹木醫學學會。 21. 陽明山國家公園管理處。2016。陽明山國家公園園區資源。http://www.ymsnp.gov.tw/。 22. 黃增泉。1993。臺灣植物誌第三卷。第二版。行政院國家科學委員會。1084頁。 23. 劉明岩。2009。原生地在臺灣 白色山櫻取俗名「福爾摩沙櫻」。聯合報 2 月 23 日。A6 生活版。 24. 蕭文偉、孫岩章。2004。臺大實驗林造林地2002年起杉木萎凋監測結果之探討。中華民國植物病理學會九十三年年會論文。 25. APHA. 1998. Standard methods for examination of water and wastewater. Method 5210B. APHA. p 5-3~5-6. 26. Bradford KJ, Hsiao TC, 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology 70, 1508-13. 27. Bukhov NG, Wiese C, Neimanis S, Heber U, 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynthesis Research 59, 81-93. 28. Chang TT, 1992. Decline of some forest trees associated with brown root rot caused by Phellinus noxius. Plant Pathology Bulletin 1, 90-5. 29. Chang TT, 1995. A selective medium for Phellinus noxins. European journal of forest pathology 25, 185-90. 30. Drew MC, 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual review of plant biology 48, 223-50. 31. Gao XP, Yan JY, Liu EK, Shen YY, Lu YF, Zhang DP, 2004. Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. The Journal of Horticultural Science and Biotechnology 79, 114-8. 32. Giaveno C, Ferrero J, 2003. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed Appl Biotechnol 3, 89-94. 33. Hare P, Cress W, Van Staden J, 1998. Dissecting the roles of osmolyte accumulation during stress. Plant, cell & environment 21, 535-53. 34. Huang J-H, Ann P-J, Chiu Y-H, Tsai J-N, 2012. First Report of Phytophthora cambivora Causing Leaf and Stem Blight and Root Rot on Taiwan Cherry (Prunus campanulata) in Taiwan. Plant Disease 96, 1065-. 35. Kishor PK, Sangam S, Amrutha R, et al., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88, 424-38. 36. Larkindale J, Huang B, 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation 47, 17-28. 37. Liu X, Huang B, 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science 40, 503-10. 38. Machado S, Paulsen GM, 2001. Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant and Soil 233, 179-87. 39. Martineau J, Specht J, Williams J, Sullivan C, 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Science 19, 75-8. 40. Masago H, Yoshikawa M, Fukada M, Nakanishi N, 1977. Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology 67, 425-8. 41. Niu G, Rodriguez DS, Mackay W, 2008. Growth and physiological responses to drought stress in four oleander clones. Journal of the American Society for Horticultural Science 133, 188-96. 42. Russell DA, Wong DML, Sachs MM, 1990. The anaerobic response of soybean. Plant Physiology 92, 401-7. 43. Sakamoto A, Murata N, 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, cell & environment 25, 163-71. 44. Tan C, Yu Z, Yang H, Yu S, 1988. Effect of high temperature on ethylene production in two plant tissues. Acta Phytophysiol. Sin 14, 373-9. 45. Vartapetian BB, Jackson MB, 1997. Plant adaptations to anaerobic stress. Annals of Botany 79, 3-20. 46. Vierling E, 1991. The roles of heat shock proteins in plants. Annual review of plant biology 42, 579-620. 47. Vollenweider P, Günthardt-Goerg MS, 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution 137, 455-65. 48. Wahid A, Close T, 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum 51, 104-9. 49. Wahid A, Gelani S, Ashraf M, Foolad MR, 2007. Heat tolerance in plants: an overview. Environmental and experimental botany 61, 199-223. 50. Weaich K, Bristow KL, Cass A, 1996. Modeling preemergent maize shoot growth: II. High temperature stress conditions. Agronomy Journal 88, 398-403. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49834 | - |
| dc.description.abstract | 山櫻花 (Prunus companulata Maxim) 為落葉喬木,一到春天便會開滿緋紅色花朵,廣受國人喜愛。但在新闢或更新之公園綠地,經常性發生山櫻花植株立枯或半邊立枯之情形,發生比例可達三成甚至五成,死亡之山櫻花需進行移除與補植,在養護上造成極大困擾。因此本研究目的即為探討山櫻花立枯發生之原因,並針對其原因發展防治之對策,希望可以解決山櫻花立枯之問題。經由臺大校園、臺北市、新北市、臺中市等地區之田間山櫻花立枯調查,發現立枯多發生於新植或移植地區,而當地立地環境不良如排水不良與覆土過深也與之相關,故在上述環境中容易發生山櫻花立枯。在訪問園藝業者時,業者多表示山櫻花本身沒有致命病蟲害,在移植中對環境要求甚高,容易枯死。在颱風過境觀察倒伏之山櫻花根部發現,其根部在移植後新根生長量少,斷根也沒有癒合。又依據林業試驗所 2014年林木疫情通報共 2036例中,山櫻花僅 29 例,含 3 例褐根病,以逆境、移植不當、淹水為主要害因。再依重要 14 種非傳染性害因加以分析,歸納危害山櫻花的主要害因應為立地環境異常、耕作或移植不當、缺氧或浸水、缺水等項目。本研究對立枯之山櫻花根部進行病原菌分離,目前並沒有發現造成山櫻花病害常見之病原菌。在淹水不缺氧之裸根浸水試驗中,山櫻花植株可維持一個月不會死亡。在淹水加葡萄糖-麩胺酸造成缺氧之裸根與盆栽試驗中,山櫻花植株 3 天即有萎凋症狀,10 天即可造成植株死亡。以有機肥加淹水造成缺氧者,約 3 天造成萎凋,達 9 天可致死。在缺水乾旱復甦試驗中,山櫻花植株出現萎凋症狀後澆水復甦,萎凋初期葉片下垂之狀態可以完全回復,萎凋末期葉片脆化者,死亡率超過一半。在高溫不缺水試驗中,山櫻花植株可以忍受白天氣溫 40℃ 連續 20 天不發生萎凋。綜合以上結果,山櫻花的立枯或半立枯,並非病原生物所造成,而是由不良環境加上本身傷口不易癒合,不易長新根所造成。其防治也應以小苗移植、避免移植傷根、增大根球、加強養根、選擇良好基地等為原則。 | zh_TW |
| dc.description.abstract | Taiwan cherry (Prunus companulata Maxim) is a native deciduous tree species in Taiwan. In spring season, it usually bloom plentifully and brightly, making is a favorite flowering plant of Taiwan people. However, when people plant the Taiwan cherry in new park or transplant them, there was a great opportunity that they suffered from the wilting, decline and even death situation. The ratio of decline or half decline may as high as 30 to 50%, making the maintenance a big burden to the horticulturalist as the dead tree need to be removed and replaced frequently. Thus, this study is aimed to investigate the reason of Taiwan cherry wilting or decline, and to develop the strategy of control it. By surveying the Taiwan cherry decline in NTU, Taipei, New Taipei and Taichung, it was found decline usually occurred in newly planted or transplanting area, and the problem usually correlated with poor planting site such as poor drainage and thick covering soil. In the interview with local horticulturalist, they responded that the Taiwan cherry doesn’t have lethal diseases or pests, but it require a higher standard of environmental factor in transplantation. After typhoon striking in 2015, we investigated the wind-fell trees. We found that the roots of Taiwan cherry did not grow new rootlets after transplanting, and the cutting wound did not recover at all. According to the Taiwan Forest Epidemic Reporting System in 2014 that collected by Taiwan Forest Research Institute, among the 2036 cases of reported pests or disorders in Taiwan, only 29 cases were belong to Taiwan cherry or other cherry. This list contained 3 cases of root rot disease, while 42% or 12 cases were related with environmental stress, improper transplanting or flooding situation. Based on factor analysis by our lab, among 14 important non-infectious factors, major harmful factors of Taiwan cherry decline were poor planting site, improper cultivation or transplanting, oxygen deficit or flooding, and drought. In this study, we isolated the fungi and bacteria pathogen from the root of wilted Taiwan cherry, but did not find the common pathogens that cause diseases on Taiwan cherry at present. In the flooding test of bare root without oxygen deficit, Taiwan cherry can keep healthy for one month without death. In the flooding test of Taiwan cherry with bare root added with glucose-glutamine solution to make the oxygen deficit, they showed wilting symptom in about 3 days, and caused plant death in about 9 days. In the flooding test of pot plant with organic fertilizer added into soil, Taiwan cherry showed wilting symptom in about 3 days, and caused plant death in about 9 days. In the test of recovery after drought, Taiwan cherry can recover very well when in early stage or drought index 1. In this early drought stage the drooping leaves can completely recover after watering, but in the late stage the brittle leaves may not recover with mortality rate over 50%. In the test of high temperature without drought, Taiwan cherry can stand for day temperature at 40℃ continued for 20 days without wilting. Based on the above results, the Taiwan cherry decline or half decline is not caused by biotic pathogens, but caused by poor environment, difficult wound healing and difficult to grow new root. The prevention of wilting or decline, therefore should pay attentions to transplanting in young stage, avoiding the root wounds, enlarging the root core, improving the root culturing, and choosing a better environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:51:27Z (GMT). No. of bitstreams: 1 ntu-105-R01645011-1.pdf: 8980081 bytes, checksum: b6152f57530a72e9f84e54caa7ab78ba (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 表目錄 x 圖目錄 xi 第一章 前言 1 一、山櫻花之簡介 1 二、研究目的 3 第二章 前人研究 4 一、山櫻花之病害 4 二、淹水與缺氧逆境對植物之影響 4 三、乾旱逆境對植物之影響 5 四、高溫逆境對植物之影響 5 第三章 材料與方法 7 一、山櫻花立枯之田間調查及原因初探 7 (一) 山櫻花之立枯田間調查 7 (二) 山櫻花立枯之業者訪談 7 (三) 颱風風倒山櫻花進行探討 7 (四) 立枯與移植地之立地環境進行探討 8 (五) 文獻及林業試驗所林木疫情之通報案件進行探討 8 (六) 各種非傳染性病害進行歸納分析 8 二、山櫻花立枯根部之病原菌分離及探討 10 (一) 可疑病原菌之分離與鑑定 10 (二) 可疑病原菌之病原性測試 11 三、淹水逆境對山櫻花影響之研究 11 四、缺氧逆境對山櫻花影響之研究 12 (一) 葡萄糖-麩胺酸對山櫻裸根容器淹水法 12 (二) 葡萄糖-麩胺酸對山櫻水盤淹水法 13 (三) 葡萄糖-麩胺酸對山櫻盆栽澆水法 14 (四) 有機肥添加對山櫻塑膠盤淹水法 14 五、乾旱逆境對山櫻花影響之研究 15 (一) 山櫻花萎凋與土壤含水量之關係 16 (二) 乾旱萎凋後復甦 16 六、高溫逆境對山櫻花影響之研究 16 第四章 結果 18 一、山櫻花立枯之田間調查及原因初探 18 (一) 山櫻花立枯之田間調查 18 (二) 山櫻花立枯之業者訪談 21 (三) 颱風風倒山櫻花進行探討 21 (四) 立枯與移植地之立地環境進行探討 23 (五) 文獻及林業試驗所林木疫情之通報案件進行探討 24 (六) 各種非傳染性病害進行歸納分析 25 二、山櫻花立枯根部之病原菌分離及探討 27 (一) 可疑病原菌之分離與初步鑑定 27 (二) 可疑病原菌之病原性測試 32 三、淹水逆境對山櫻花影響之研究 33 四、缺氧逆境對山櫻花影響之研究 36 (一) 葡萄糖-麩胺酸對山櫻花裸根容器淹水法 36 (二) 葡萄糖-麩胺酸對山櫻水盤淹水法 38 (三) 葡萄糖-麩胺酸對山櫻盆栽澆水法 39 (四) 有機肥添加對山櫻塑膠盤淹水法 40 五、乾旱逆境對山櫻花影響之研究 41 (一) 山櫻花萎凋與土壤含水量之關係 42 (二) 山櫻花乾旱萎凋後復甦能力之測試 44 六、高溫逆境對山櫻花影響之研究 47 第五章 討論 49 一、山櫻花立枯之田間調查 49 二、山櫻花立枯之病因分析 50 三、淹水逆境對山櫻花影響之研究 51 四、缺氧逆境對山櫻花影響之研究 51 五、乾旱逆境對山櫻花影響之研究 52 六、高溫逆境對山櫻花影響之研究 53 參考文獻 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非生物因子 | zh_TW |
| dc.subject | 山櫻花 | zh_TW |
| dc.subject | 立枯 | zh_TW |
| dc.subject | 逆境 | zh_TW |
| dc.subject | 管理 | zh_TW |
| dc.subject | management | en |
| dc.subject | anaerobic | en |
| dc.subject | Taiwan cherry | en |
| dc.subject | stress | en |
| dc.subject | decline | en |
| dc.title | 櫻花立枯萎凋及其管理之研究 | zh_TW |
| dc.title | Study on decline of Taiwan Cherry and its management | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊爵因,張東柱,楊宏仁 | |
| dc.subject.keyword | 山櫻花,非生物因子,管理,立枯,逆境, | zh_TW |
| dc.subject.keyword | anaerobic,decline,management,stress,Taiwan cherry, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201602328 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
