請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49795完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文彬(Wen-Pin Chen) | |
| dc.contributor.author | Yu-Hsin Shie | en |
| dc.contributor.author | 謝宇欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:48:52Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | 1. Ogawa-Goto K, Tanaka K, Ueno T, Tanaka K, Kurata T, Sata T, Irie S. p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel microtubule-binding and bundling domain. Mol Biol Cell. 2007 Oct;18(10):3741-51.
2. Görlich D, Prrehn S, Hartmann E, Kalies KU, Rapoport TA. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell. 1992 Oct 30;71(3):489-503. 3. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Morternsen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48. 4. Diefenbach RJ1, Diefenbach E, Douglas MW, Cunningham AL. The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B. Biochem Biophys Res Commun. 2004 Jul 2;319(3):987-92. 5. Telikicherla D, Marimuthu A, Kashyap MK, Ramachandra YL, Mohan S, Roa JC, Maharudraiah J, Pandey A. Overexpression of ribosome binding protein 1 (RRBP1) in breast cancer. Clin Proteomics. 2012 Jun 18;9(1):7. 6. Tsai HY, Yang YF, Wu AT, Yang CJ, Liu YP, Jan YH, Lee CH, Hsiao YW, Yeh CT, Shen CN, Lu PJ, Huang MS, Hsiao M. Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene. 2013 Oct 10;32(41):4921-31. 7. Ortega A, Roselló-Lletí E, Tarazón E, Molina-Navarro MM, Martínez-Dolz L, González-Juanatey JR, Lago F, Montoro-Mateos JD, Salvador A, Rivera M, Portolés M. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS One. 2014 Sep 16;9(9):e107635. 8. Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 2006 Aug 4;99(3):275-82. 9. Cui XA, Zhang Y, Hong SJ, Palazzo AF. Identification of a region within the placental alkaline phosphatase mRNA that mediates p180-dependent targeting to the endoplasmic reticulum. J Biol Chem. 2013 Oct 288: 29633-29641. 10. Ueno T, Tanaka K, Kaneko K, Taga Y, Sata T, et al. Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion. J Biol Chem. 2010 Sep 285: 29941-29950. 11. Ueno T, Kaneko K, Katano H, Sato Y, Mazitschek R, et al. Expansion of the trans-Golgi network following activated collagen secretion is supported by a coiled-coil microtubule-bundling protein, p180, on the ER. Exp Cell Res. 2010 Feb 316: 329-340. 12. Benyamini P, Webster P, Meyer DI. Knockdown of p180 eliminates the terminal differentiation of a secretory cell line. Mol Biol Cell. 2009 Jan 20: 732-744. 13. de Waard MC, van der Velden J, Boontje NM et al. Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction. American journal of physiology Heart and circulatory physiology. 2009;296:H1513-1523. 14. Leucker TM, Bienengraeber M, Muravyeva M et al. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection. Journal of molecular and cellular cardiology. 2011;51:803-811. 15. Vettor R, Valerio A, Ragni M et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. American journal of physiology Endocrinology and metabolism. 2014;306:E519-528. 16. Werner C, Hanhoun M, Widmann T et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. Journal of the American College of Cardiology. 2008;52:470-482. 17. Wu, H., Lee, J., Vincent, L. G., Wang, Q., Gu, M., Lan, F., Churko,J. M., Sallam, K. I., Matsa, E., Sharma, A., Gold, J. D., Engler, A. J.,Xiang, Y. K., Bers, D. M., andWu, J. C. (2015) Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17, 89–100 18. Luzak B, Rywaniak J, Stanczyk L and Watala C. Pravastatin and simvastatin improves acetylsalicylic acid-mediated in vitro blood platelet inhibition. Eur J Clin Invest. 2012;42:864-72. 19. Tao H, Yang JJ, Shi KH and Li J. Epigenetic factors MeCP2 and HDAC6 control alpha-tubulin acetylation in cardiac fibroblast proliferation and fibrosis. Inflamm Res. 2016. 20. Zakharova L, Nural-Guvener H, Feehery L, Popovic-Sljukic S and Gaballa MA. Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model. Stem Cells Transl Med. 2015;4:1086-96. 21. Hershberger R, Pinto J, Parks S, Kushner J, Li D, Ludwigsen S, Cowan J, Morales A, Parvatiyar M, Potter J. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ Genet. 2009; 2: 306–313. 22. Carvajal-Vergara X, Sevilla A, D’Souza SL, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465:808–812. 23. McKinsey, Timothy A. 'Therapeutic potential for HDAC inhibitors in the heart.' Annual review of pharmacology and toxicology 52 2012: 303-319. 24. McKinsey TA, Kass DA. Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 2007; 6: 617–635. 25. Degerman, Eva, Per Belfrage, and Vincent C. Manganiello. 'Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3).' Journal of Biological Chemistry ,1997,272.11: 6823-6826. 26. Fisher, Douglas A., et al. 'Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase.' Journal of Biological Chemistry 1998 273.25: 15559-15564. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49795 | - |
| dc.description.abstract | 擴張型心肌病會導致左心室之擴大與心臟收縮力之減弱。造成擴張型心肌病的各式病因限制了我們對於長期發病機制的了解。有個獨特的家族性擴張型心肌病合併顯著的左心室心肌緻密化不全家族,被鑑別其肌節基因上有兩個突變(TNNT2:R151W and MYPN:S1296T)。此外,帶有此突變的女兒的擴張型心肌病的進程比有同樣突變的爸爸更為快速。對於等待移植的小兒患者來說,可用的器官捐贈者的缺乏,導致死亡率居高不下。因此,建立個人化的基因特異性治療是相當重要的。本研究旨在利用擴張型心肌患者的誘導性多功能幹細胞所分化的心肌細胞,探討相關機制及治療藥物。
實驗發現此家族性擴張型心肌病合併顯著的左心室心肌緻密化不全家族患者的誘導性多功能幹細胞所分化的心肌細胞可成功的重現疾病的特徵,在分化大概五十天後,會有細胞收縮減弱及異常的胞內鈣離子處理等等特性。實驗亦發現在此類擴張型心肌病患者的誘導性多功能幹細胞所分化的心肌細胞中,有變異的TNNT2核轉移的現象,與PDE3A的表達量增加與PDE9A的表達量減少有關聯。此外,在分化約50天的此類擴張型心肌病患者的誘導性多功能幹細胞所分化的心肌細胞中,cilostazol (PDE3的抑制劑)可以顯著的增加細胞收縮強度。在分化後第30天給予statins類藥物治療(simvastatin),可顯著改善心肌細胞之收縮功能障礙。在之後的研究中,我們會繼續確認statin的給予與PDEs表現量的改變。 在表達變異的TNNT2的HL-1細胞中,我們發現他們對於β-AR有較差的反應,這與PDE9A的表達量下降有關聯,且可以被statin的治療改善。但在HL-1的細胞中,statin的治療無法改善變異的TNNT2轉移到細胞核的現象,但可以顯著回復PDE9A的表達量,改善細胞的大小與β-AR刺激的收縮反應。 總結來說,此研究建立了家族性擴張型心肌病合併顯著的左心室心肌緻密化不全家族患者的誘導性多功能幹細胞所分化的心肌細胞之實驗平台,可用於做機轉之研究與治療藥物的開發。Simvastatin被認為在體外的實驗中有可能改善心肌功能不全的原因與在表現變異的R151W troponin T的心肌細胞中可使PDE9A的表現量正常化有關。這需要全面的遺傳分析與功能測試以確認是否在其他的基因上有變異,包含notch與TBX10,有助於了解左心室心肌緻密化不全的病理機轉與statins類藥物可改善心肌功能不全的機轉,以達到個別化治療與精確的醫療之目標。 | zh_TW |
| dc.description.abstract | Dilated cardiomyopathy (DCM) causes left ventricular dilation and systolic failure. The heterogeneous etiologies underlying DCM limited our understanding of the long-term pathogenesis of DCM. A unique familial DCM family with significant left ventricular noncompaction (LVNC) was identified with two mutations in the sarcomeric genes (TNNT2:R151W and MYPN:S1296T). Furthermore, LVNC progression in the daughter carrying the mutations was faster than that in the LVNC father. The lack of available donors results in significant mortality for pediatric patients awaiting transplantation. Thus, it is appealing to establish the individualized gene-specific therapy. Using cardiomyocytes derived from LVNC-hiPSC-CM, the present study aimed to investigate the underlying mechanism and to identify the therapeutic drugs.
Our study found that hiPSC-CM derived from these LVNC families could successfully recapitulate the disease phenotype with the decreased cell shortening and the abnormal intracellular calcium handling property around day 50 after differentiation. It was also found the nuclear translocation of the mutant TNNT2 in LVNC-derived hiPSC-CM in association with the increase of PDE3A and the decrease of PDE9A expressions. Furthermore, cilostazol (a PDE3 inhibitor) could significantly increase cell shortening in LVNC-iPSC-CM on day 70. The contractile dysfunction could be significantly reversed with the treatment of statins (simvastatin) since day 30 after differentiation. It will be further confirmed the alteration of PDEs expressions in LVNC-hiPSC-CM treated with statins. In HL-1 cell expressing mutant TNNT2 (TNNT(R151W)-HL-1), it was found a less β-AR response in association with the decrease of PDE9A, which could be reversed in the presence of simvastatin. Simvastatin did not inhibit the nuclear translocation of mutant TNNT2 in TNNT(R151W)-HL-1, but could significantly recover PDE9A expression, cell size, and β-AR-stimulated positive inotropic response. In conclusion, this study established a LVNC-hiPSC-CM platform to characterize the pathogenesis for mechanic study and the development of therapeutic drugs. Simvastatin was identified with the benefit to potentially ameliorate cardiac dysfunction in vitro in association with the normalization of PDE9A expression in the myocytes expressing mutant R151W troponin T. It needs comprehensive genetic analysis with combination of the functional study to clarify the mutations in other genes, including notch and TBX10, contribute to the pathogenesis of this LVNC family and the mechanistic link to the action of statins in the improvement of cardiac function for the goals of the individualized therapy and precision medicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:48:52Z (GMT). No. of bitstreams: 1 ntu-105-R03443002-1.pdf: 3712891 bytes, checksum: 09d3c82370d6a1471ded659604b30933 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Index
摘要 1 Abstract 3 Introduction 5 Materials and Methods 7 Human induced pluripotent stem cell (hiPSC) and human embryonic stem cell(hESC) generation 7 hiPSC and hESC culture 7 Cardiomyogenic differentiation method 7 Purification of cardiomyocytes 8 HL-1 cell culture 9 Production and transduction of lentivirus carrying human R151W TnnT2 to HL-1 cells 9 Measurement of intracellular Ca2+ transient 10 RNA extraction and qPCR 11 Immunofluorescence stain 11 Result 14 Genetic mutations, pedigree and echocardiography of the LVNC family 14 Functional characterization of hiPSC-derived cardiomyocyte maturation and the development of cardiac depression 14 Higher occurrence of triggered activity in LVNC-hiPSC-CMs 15 The impaired positive inotropic effect in response to β-adrenergic stimulation in LVNC-hiPSC-CMs 15 Statins treatment could ameliorate contractile dysfunction of LVNC-hiPSC-CMs 16 Redistribution of the mutant TNNT2 into the nuclei of LVNC-hiPSC-CMs 17 PDE-3 inhibitor induced a greater positive inotropic effect in LVNC-hiPSC-CMs 17 The altered transcriptional profiling of PDEs in LVNC-hiPSC-CMs with or without statin-treatment 17 Functional characterization of HL-1 expressing mutant TNNT2 (R151W-HL-1) 18 The nuclear translocation of mutant TNNT2 and the transcriptional alteration of PDEs in R151W-HL-1 cells with or without statin treatment 19 Effect of statins treatment in the functional recovery of HL-1 expressing mutant TNNT2 19 Transcriptional profiling of PDEs in R151W-HL-1 20 Discussion 22 References 27 Figures 31 Figure 1 31 Figure 2 33 Figure 3 36 Figure 4 37 Figure 5 38 Figure 6 39 Figure 7 41 Figure 8 42 Figure 9 43 Figure 10 44 Figure 11 46 Supplemental Figures 47 Figure S1 47 Figure S2 48 Figure S3 51 Figure S4 54 Figure S5 56 Figure S6 57 Figure S7 58 Figure S8 60 Supplemental Tables 62 Table S1 62 | |
| dc.language.iso | en | |
| dc.subject | statin | zh_TW |
| dc.subject | hiPSC-CM | zh_TW |
| dc.subject | TNNT2 | zh_TW |
| dc.subject | LVNC | zh_TW |
| dc.subject | PDE3A | zh_TW |
| dc.subject | PDE9A | zh_TW |
| dc.title | 利用來自左心室緻密化不全心肌病變病人之誘導式多能幹細胞分化得到的心肌細胞做為疾病模擬和探索治療藥物 | zh_TW |
| dc.title | Using human induced pluripotent stem cell derived cardiomyocytes for disease modelling of left ventricular non-compaction cardiomyopathy and therapeutic drug discovery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊鎧鍵(Kai-Chien Yang),蘇銘嘉(Ming-Jai Su),吳美環(Mei-Hwan Wu),何弘能(Hong-Nerng Ho) | |
| dc.subject.keyword | hiPSC-CM,TNNT2,LVNC,PDE3A,PDE9A,statin, | zh_TW |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201601435 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
