請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮山(Long-Sun Huang) | |
| dc.contributor.author | Wei-Je Chen | en |
| dc.contributor.author | 陳維晢 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:47:51Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | 參考文獻
[1] 醫學百科-腹膜炎. Available: http://big5.wiki8.com/fumoyan_20378/ [2] Drug Information Handbook. 9th ed., pp.564-566 ,2001-2002. [3] M. Aminoglycoside. In: Drugdex Informaction System, Inc.; 2003. [4] Guide to antimicrobial therapy. 32th ed., 2002. [5] M. Aminoglycoside. In: ToxPoints™ System, Inc.,2003. [6] S. Moulton, J. Barisci, A. Bath, R. Stella, and G. Wallace, 'Investigation of protein adsorption and electrochemical behavior at a gold electrode,' Journal of colloid and interface science, vol. 261, pp. 312-319, 2003. [7] Y.-K. Yen, C.-Y. Huang, C.-H. Chen, C.-M. Hung, K.-C. Wu, C.-K. Lee, et al., 'A novel, electrically protein-manipulated microcantilever biosensor for enhancement of capture antibody immobilization,' Sensors and Actuators B: Chemical, vol. 141, pp. 498-505, 2009. [8] 陳獻宗, 當代神經學, 橘井文化事業有限公司, 2003. [9] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, et al., 'Surface stress in the self-assembly of alkanethiols on gold,' Science, vol. 276, pp. 2021-2024, 1997. [10] J. Fritz, M. Baller, H. Lang, H. Rothuizen, P. Vettiger, E. Meyer, et al., 'Translating biomolecular recognition into nanomechanics,' Science, vol. 288, pp. 316-318, 2000. [11] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, 'Bioassay of prostate-specific antigen (PSA) using microcantilevers,' Nature biotechnology, vol. 19, pp. 856-860, 2001. [12] J. W. Ndieyira, M. Watari, A. D. Barrera, D. Zhou, M. Vögtli, M. Batchelor, et al., 'Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance,' Nature Nanotechnology, vol. 3, pp. 691-696, 2008. [13] C. Vancura, M. Rüegg, Y. Li, C. Hagleitner, and A. Hierlemann, 'Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems,' Analytical chemistry, vol. 77, pp. 2690-2699, 2005. [14] M. Zimmermann, T. Volden, K.-U. Kirstein, S. Hafizovic, J. Lichtenberg, O. Brand, et al., 'A CMOS-based integrated-system architecture for a static cantilever array,' Sensors and Actuators B: Chemical, vol. 131, pp. 254-264, 2008. [15] C.-W. Huang, H.-T. Hsueh, Y.-J. Huang, H.-H. Liao, H.-H. Tsai, Y.-Z. Juang, et al., 'A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV),' Sensors and Actuators B: Chemical, vol. 181, pp. 867-873, 2013. [16] R. Ivan, Jonathan, B., David, M. 原著,陳豪勇鑑修,王聖予、陳建和編譯,免疫學,第五版,藝軒圖書出版社, 2002. [17] http://en.wikipedia.org/wiki/Antibody. [18] 洪維廷, '應用壓阻式微懸臂樑生物感測器偵測巴斯德桿菌之研究, ' 國立臺灣大學工學院應用力學研究所碩士論文, 2009 [19] Y. K. Yen, “A Study on an Integrated Miniature Piezoresistive Microcantilever Biosensor and its Applications,” Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Doctoral Dissertation, 2009. [20] 林世明, 應用生化學課堂講義: 晶片蛋白質薄膜製造技術, 2008. [21] P. S. R. Lavu, B. Mondal, S. Ramlal, H. S. Murali, and H. V. Batra, 'Selection and Characterization of Aptamers Using a Modified Whole Cell Bacterium SELEX for the Detection of Salmonella enterica Serovar Typhimurium,' ACS combinatorial science, 2016. [22] K. E. Opheim, M. Glick, C. Ou, K. Ryder, L. Hood, V. Ainardi, et al., 'Particle-enhanced turbidimetric inhibition immunoassay for theophylline evaluated with the Du Pont aca,' Clinical chemistry, vol. 30, pp. 1870-1874, 1984. [23] N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, 'Cantilever transducers as a platform for chemical and biological sensors,' Review of scientific instruments, vol. 75, pp. 2229-2253, 2004. [24] M. Tudor, M. Andres, K. Foulds, and J. Naden, 'Silicon resonator sensors: interrogation techniques and characteristics,' in IEE Proceedings D (Control Theory and Applications), 1988, pp. 364-368. [25] J. Thaysen, 'Cantilever for bio-chemical sensing integrated in a microliquid handling system,' Technical University of DenmarkDanmarks Tekniske Universitet, Department of Micro-and NanotechnologyInstitut for Mikro-og Nanoteknologi, 2001. [26] 張凱峯, '利用電場操控蛋白質佈植於壓阻式生物感測器之藥物治療監測應用,' 臺灣大學應用力學研究所學位論文, pp. 1-112, 2012. [27] A. Moulin, S. O'shea, R. Badley, P. Doyle, and M. Welland, 'Measuring surface-induced conformational changes in proteins,' Langmuir, vol. 15, pp. 8776-8779, 1999. [28] H.-F. Ji, Y. Zhang, V. V. Purushotham, S. Kondu, B. Ramachandran, T. Thundat, et al., '1, 6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury,' Analyst, vol. 130, pp. 1577-1579, 2005. [29] H.-F. Ji, E. Finot, R. Dabestani, T. Thundat, G. M. Brown, and P. F. Britt, 'A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection,' Chemical Communications, pp. 457-458, 2000. [30] 辜煜夫, '壓阻式微懸臂梁生化感測系統溫度效應之量測, 消除與應用,' 臺灣大學應用力學研究所學位論文, pp. 1-190, 2009. [31] F. Zhou, W. Shu, M. E. Welland, and W. T. Huck, 'Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes,' Journal of the American Chemical Society, vol. 128, pp. 5326-5327, 2006. [32] F. T. Goericke, 'Simulation, fabrication and characterization of piezoresistive bio-/chemical sensing microcantilevers,' 2007. [33] A. Choudhury, P. J. Hesketh, T. Thundat, and Z. Hu, 'A piezoresistive microcantilever array for surface stress measurement: curvature model and fabrication,' Journal of Micromechanics and Microengineering, vol. 17, p. 2065, 2007. [34] A. Loui, F. Goericke, T. Ratto, J. Lee, B. Hart, and W. King, 'The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing,' Sensors and Actuators A: Physical, vol. 147, pp. 516-521, 2008. [35] J. Harkey and T. W. Kenny, '1/f noise considerations for the design and process optimization of piezoresistive cantilevers,' Journal of Microelectromechanical Systems, vol. 9, pp. 226-235, 2000. [36] L. H. Cheng, Chang, Y. C., Hu, W. C., Liao, H. H., Tsai, H. H., Juang, Y. Z. & Lu, Y. W. Surface Stress on CMOS Cantilever Sensor Induced by Protein Absorption. 2012 ISMM. [37] 林隆翊, '壓阻式微懸臂樑生物感測元件於抗癲癇藥物之研究,' 臺灣大學應用力學研究所學位論文, pp. 1-87, 2012. [38] 李忠憲, '具熱補償設計之標準 CMOS 製程微懸臂樑於抗癲癇藥物丙戊酸之量測,' 臺灣大學應用力學研究所學位論文, pp. 1-99, 2014. [39] K. R. Williams and R. S. Muller, 'Etch rates for micromachining processing,' Journal of microelectromechanical systems, vol. 5, pp. 256-269, 1996. [40] A. Qualtieri, F. Rizzi, G. Epifani, A. Ernits, M. Kruusmaa, and M. De Vittorio, 'Parylene-coated bioinspired artificial hair cell for liquid flow sensing,' Microelectronic Engineering, vol. 98, pp. 516-519, 2012. [41] L. Li, X. Liu, W. A. Qureshi, and A. J. Mason, 'CMOS amperometric instrumentation and packaging for biosensor array applications,' IEEE transactions on biomedical circuits and systems, vol. 5, pp. 439-448, 2011. [42] http://www.cic.narl.org.tw/main.jsp. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49779 | - |
| dc.description.abstract | 在近代社會健康意識抬頭,並且邁向高齡化社會的階段,以病人為中心的醫療環境越來越受重視,故遠距醫療照護也就越趨成熟。對於可攜式生醫檢測的需求也日益增大,也代表藥物療劑監測觀念已經受到重視,對於病患當下的身體狀況而調整藥物劑量,不僅增加治療效果也將副作用降至最低。但是目前醫院檢測的流程繁複、耗時且需高費用。本研究欲以CMOS標準製程製造之微懸臂樑生醫感測器,應用於治療腹膜炎藥物慶大黴素的濃度即時偵測。
以商業化CMOS標準製程整合微奈米機電技術(MEMS)及生醫微機電技術(BioMEMS)製作出壓阻式微懸臂樑感測器,並且針對此感測器設計一套標準封裝流程,降低外部雜訊對於感測晶片的訊號影響,並且提高感測系統的良率,使該感測器成功定量量測到小分子藥物慶大黴素。另外,更應用了電場操控的方式,使此微懸臂樑感測器靈敏度提升,成功量測到極低濃度之慶大黴素。 本研究之待測藥物慶大黴素(Gentamicin)與抗體以專一性鍵結的方式鍵結,該鍵結發生所引發的表面應力變化導致壓阻層訊號改變,因此在小分子量測上具有其優勢。實驗量測電場操控造成靈敏度的改變,以未加電場與60伏特電場操控做比較,60伏特電場操控比未加電場操控之訊號提升了2.36倍。最後,成功以60伏特電場操控定量偵測了濃度50 μg/ml、35 μg/ml、20 μg/ml的慶大黴素,分別得到16.77 ppm、9.91 ppm以及4.09 ppm的訊號變化,並且與現行醫院所用的檢測儀器做比較得到趨勢一致的結果。證明了微懸臂樑生醫感測器未來有機會發展成一可定量偵測小分子藥物之生醫感測器。 | zh_TW |
| dc.description.abstract | Adverse drug reaction has received increasing attention recently. For some specific drugs with narrow therapeutic ranges, use of therapeutic drug monitoring (TDM) may reduce the adverse drug reactions for an individual to avoid drug toxicity. Gentamicin, managed in TDM, is a widely used antibiotic drug for patients with renal failure. This drug, composed of a mixture of related gentamicin components and fractions, is used to treat many types of bacterial infections, particularly those caused by Gram-negative organisms.
In this study, a label-free drug detection of antibiotic gentamicin is made with the CMOS BioMEMS cantilever sensing transduction in a microfluidic channel. The sensor manufacturing technology utilizes 0.35 um 2P4M CMOS process with post MEMS processes of gold metallization and silicon dry etching. Meanwhile, this biosensing mechanism is based on protein-drug recognition, which results in conformational change and thus induced cantilever deflection. In this subproject, to enhance the sensor sensitivity, the CMOS BioMEMS cantilever sensor is firstly developed for the high capture antibody surface density of immobilization with the introduction of device electric field and simultaneous antibody-immobilized monitoring. The enhanced antibody immobilization is expected to significantly increase antibody-drug binding onto the sensing surface, and the simultaneous monitoring assures the device for biosensing detection and biosensor availability. By comparing the change of the signals in no electric field of antibody immobilization, the results showed that the signal of Gentamicin with 60 volt electric field was improved by around 2 folds. At last, the detection of the Gentamicin with concentration of 50 µg/ml、35 µg/ml and 20 µg/ml was achieved by a packaged piezoresistive microcantilever biosensor with the 60 volts of applied electric fields enhancement. The induced change in resistance was measured 16.77 ppm, 9.91 ppm and 4.09 ppm respectively. The results presented an excellent agreement with those in conventional method PETINIA. Detection of gentamicin by the CMOS-MEMS cantilever biosensor provides a promising potential for a portable, palm-sized device in service of patient-centered health care. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:47:51Z (GMT). No. of bitstreams: 1 ntu-105-R03543083-1.pdf: 4252069 bytes, checksum: c563df556723bd8aa7e18cc12a1abfd5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
第一章 緒論 9 1-1 前言 9 1-2 研究動機與目的 10 1-3 文獻回顧 11 1-3-1 腹膜炎與治療腹膜炎藥物 11 1-3-2 蛋白質特性與其吸附應用之研究 15 1-3-3 微懸臂樑生物感測器用於生化檢測 16 1-4 論文大綱 20 第二章 生物感測器之原理與介紹 21 2-1 生物的免疫反應 21 2-1-1 抗體 22 2-1-2 抗體與抗原間專一性鍵結原理 23 2-2 生物感測器基本原理 26 2-3 表面電漿共振生物感測器 31 2-4 粒子增強型比濁抑制免疫分析法 32 2-5 微懸臂樑生物感測器 33 第三章 CMOS MEMS壓阻式微懸臂樑理論與設計 37 3-1 基本微懸臂樑理論 37 3-2 壓阻式微懸臂樑應力機制與應力分析 41 3-2-1 壓阻材料特性分析 41 3-2-2 微懸臂樑應力機制 41 3-2-3 微懸臂樑應力分析 44 3-3 微懸臂樑設計 50 3-3-1 微懸臂樑結構尺寸分析 50 3-3-2 壓阻材料層尺寸分析 52 3-4 雜訊分析 54 3-5 CMOS MEMS壓阻式微懸臂樑製程與功能設計 56 第四章 CMOS MEMS壓阻式微懸臂樑製作與封裝 59 4-1 微懸臂樑晶片製作 59 4-2 CMOS MEMS微懸臂樑機電特性量測 61 4-3 CMOS MEMS微懸臂樑生物感測器封裝設計 66 4-3-1 線路基板製作 66 4-3-2 電路板設計與製作 69 4-3-3 微流道上蓋製作 70 4-3-4 CMOS MEMS壓阻式微懸臂樑感測系統之封裝 72 第五章 實驗結果與討論 74 5-1 溫度補償架構與方法 74 5-2 藥物測試實驗架構與方法 76 5-3 治療腹膜炎藥物慶大黴素之反應量測 81 5-3-1 慶大黴素之反應量測與可行性分析 81 5-3-2 電場操控對於慶大黴素之量測反應比較 82 5-3-3 不同濃度慶大黴素之量測反應與比較 85 第六章 結論與未來展望 88 6-1 結論 88 6-2 未來展望 89 第七章 參考文獻 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電場操控 | zh_TW |
| dc.subject | 微懸臂樑 | zh_TW |
| dc.subject | 標準封裝 | zh_TW |
| dc.subject | 慶大黴素 | zh_TW |
| dc.subject | packaged | en |
| dc.subject | electrical field enhancement | en |
| dc.subject | gentamicin | en |
| dc.subject | microcantilever | en |
| dc.title | 利用封裝改良之壓阻式微懸臂樑生物感測器於腹膜炎治療藥物慶大黴素之偵測 | zh_TW |
| dc.title | Detection of Gentamicin for Patients with Peritonitis by a Packaged Piezoresistive Microcantilever Biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃政文(Jeng-Wen Huang),陳俊杉(Chuin-Shan Chen) | |
| dc.subject.keyword | 微懸臂樑,標準封裝,慶大黴素,電場操控, | zh_TW |
| dc.subject.keyword | microcantilever,packaged,gentamicin,electrical field enhancement, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201602193 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
