Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊嘉揚(Jia-Yang Juang)
dc.contributor.authorYu-Yi Chenen
dc.contributor.author陳于壹zh_TW
dc.date.accessioned2021-06-15T11:46:17Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-13
dc.identifier.citation[1] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-A status review,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, 1983.
[2] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for Photovoltaics,” MRS Bull., vol. 32, no. March, pp. 242–247, 2007.
[3] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett., vol. 83, no. 9, p. 1875, 2003.
[4] S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Jang, and P. K. Song, “Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications,” Thin Solid Films, vol. 517, no. 14, pp. 4061–4064, 2009.
[5] Ü. Özgür, Y. I. Alivov, C. Liu, a. Teke, M. a. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho, and H. Morko̧, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005.
[6] 曲喜新;楊邦朝;姜節儉;張懷武, “電子薄膜材料.” 北京科學出版社.
[7] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V Costa, and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films, vol. 427, no. 1–2, pp. 401–405, 2003.
[8] S.-M. Park, T. Ikegami, and K. Ebihara, “Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition,” Thin Solid Films, vol. 513, no. 1–2, pp. 90–94, 2006.
[9] H. Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, A. B. Yankovich, A. V. Kvit, P. M. Voyles, and H. Morko, “Electron scattering mechanisms in GZO films grown on a-sapphire substrates by plasma-enhanced molecular beam epitaxy,” J. Appl. Phys., vol. 111, no. 10, 2012.
[10] T. Prasada Rao, M. C. Santhosh Kumar, and N. Sooraj Hussain, “Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis,” J. Alloys Compd., vol. 541, pp. 495–504, 2012.
[11] C.-Y. Tsay, C.-W. Wu, C.-M. Lei, F.-S. Chen, and C.-K. Lin, “Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process,” Thin Solid Films, vol. 519, no. 5, pp. 1516–1520, 2010.
[12] 周東陞, “國立臺灣大學工學院機械工程學研究所 碩士論文 Master Thesis 勻度改善 Characteristics and Uniformity Improvement of Ga-doped ZnO Thin Films Deposited by Atmospheric Pressure Plasma Jet 周東陞 Tung-Sheng Chou 指導教授 : 莊嘉揚 博士 Advisor : Jia-Yang Juang , Ph . D . 中華民國 103 年 7 月 July , 2014,” 2014.
[13] 林心恬, “國立臺灣大學工學院機械工程學研究所 碩士論文 大氣電漿沉積大面積氧化鋅薄膜與材料性質分布 Material Properties Uniformity of Large Area Ga-doped ZnO Thin Films Deposited by Atmospheric Pressure Plasma Jet 林心恬 Hsin-Tien Lin Advisor : Kuo-Long Pan , Ph . D . 、 Jia-Yang Juang , Ph . D . January ,” 2015.
[14] E. J. J. Martin, M. Yan, M. Lane, J. Ireland, C. R. Kannewurf, and R. P. H. Chang, “Properties of multilayer transparent conducting oxide films,” Thin Solid Films, vol. 461, no. 2, pp. 309–315, 2004.
[15] R. A. Mereu, S. Marchionna, A. Le Donne, L. Ciontea, S. Binetti, and M. Acciarri, “ZnO:Al/i-ZnO bi-layers deposited on large substrates by pulsed D.C. magnetron sputtering for chalcogenide photovoltaics,” Ceram. Int., vol. 40, no. 9 PART B, pp. 14595–14599, 2014.
[16] W. S. Choi, E. J. Kim, S. G. Seong, Y. S. Kim, C. Park, and S. H. Hahn, “Optical and structural properties of ZnO/TiO2/ZnO multi-layers prepared via electron beam evaporation,” Vacuum, vol. 83, no. 5, pp. 878–882, Jan. 2009.
[17] C. C. Liu, Y. C. Liang, C. C. Kuo, Y. Y. Liou, J. W. Chen, and C. C. Lin, “Fabrication and opto-electric properties of ITO/ZnO bilayer films on polyethersulfone substrates by ion beam-assisted evaporation,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 2, pp. 267–272, 2009.
[18] S. K. Kim, S. Y. Kim, S. H. Kim, J. H. Jeon, T. K. Gong, D. Kim, D. Y. Yoon, and D. Y. Choi, “Influence of ZnO thickness on the optical and electrical properties of GZO/ZnO Bi-layered films,” Trans. Electr. Electron. Mater., vol. 15, no. 4, pp. 198–200, 2014.
[19] R. Hong, J. Shao, H. He, and Z. Fan, “Enhancement of near-band edge photoluminescence of ZnO thin films by employing MgF2 buffer layer,” J. Cryst. Growth, vol. 290, no. 2, pp. 334–337, May 2006.
[20] L. B. B. Valdes, “Resistivity Measurements on Germanium for Transistors,” Proc. IRE, vol. 42, no. 2, pp. 1429–1434, 1954.
[21] X. Huang, C. Gao, D. Zhang, M. Li, C. He, A. Hao, C. Yu, C. Sang, X. Huang, C. Gao, D. Zhang, M. Li, C. He, and A. Hao, “Finite element analysis of the effect of electrode resistivity on resistivity measurement in a diamond anvil cell Finite element analysis of the effect of electrode resistivity on resistivity measurement in a diamond anvil cell,” vol. 204102, no. 2007, pp. 2005–2008, 2010.
[22] X. Huang, C. Gao, Y. Han, M. Li, C. He, A. Hao, D. Zhang, C. Yu, G. Zou, and Y. Ma, “Finite element analysis of resistivity measurement with van der Pauw method in a diamond anvil cell,” Appl. Phys. Lett., vol. 90, no. 24, p. 242102, 2007.
[23] B. Wu, X. Huang, Y. Han, C. Gao, G. Peng, C. Liu, Y. Wang, X. Cui, and G. Zou, “Finite element analysis of the effect of electrodes placement on accurate resistivity measurement in a diamond anvil cell with van der Pauw technique,” J. Appl. Phys., vol. 107, no. 10, 2010.
[24] I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys. Condens. Matter, vol. 27, no. 22, p. 223201, 2015.
[25] F. Wang, D. H. Petersen, H. V Jensen, C. Hansen, D. Mortensen, L. Friis, and O. Hansen, “Three-way flexible cantilever probes for static contact,” J. Micromechanics Microengineering, vol. 21, p. 085003, 2011.
[26] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Reports, vol. 13, pp. 1–9, 1958.
[27] L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev., vol. 20, pp. 220–224, 1958.
[28] E. J. Zimney, G. H. B. Dommett, R. S. Ruoff, and D. A. Dikin, “Correction factors for 4-probe electrical measurements with finite size electrodes and material anisotropy: a finite element study,” Meas. Sci. Technol., vol. 18, no. 7, pp. 2067–2073, 2007.
[29] K. Ilse, T. Tänzer, C. Hagendorf, and M. Turek, “Geometrical correction factors for finite-size probe tips in microscopic four-point-probe resistivity measurements,” J. Appl. Phys., vol. 116, no. 22, p. 224509, 2014.
[30] M. Boll, M. R. Lotz, O. Hansen, F. Wang, D. Kjaer, P. Boggild, and D. H. Petersen, “Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 90, no. 24, pp. 1–5, 2014.
[31] F. Wang, D. H. Petersen, T. M. Hansen, T. R. Henriksen, P. Bo̸ggild, and O. Hansen, “Sensitivity study of micro four-point probe measurements on small samples,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 28, no. 1, p. C1C34, 2010.
[32] D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys., vol. 116, no. 13, 2014.
[33] Q. T. Vu, E. Kolawa, L. Halperin, and M. A. Nicolet, “Specific contact resistance extraction from four-point-probe measurements on multilayered film structures,” Solid State Electron., vol. 34, no. 3, pp. 279–283, 1991.
[34] M. A. C. S. Brown and E. Jakeman, “Theory of the four-point probe technique as applied to the measurement of the conductivity of thin layers on conducting substrates,” Br. J. Appl. Phys., vol. 17, no. 9, pp. 1143–1148, 1966.
[35] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter, vol. 16, pp. R829–R858, 2004.
[36] F C Matacotta. and G Ottaviani, “Science and technology of thin films.” 1995.
[37] Arthur Uhlir Jr., “The Potentials of Infinite Systems of Sources and Numerical Solutions of Problems in Semiconductor Engineering.” Bell System Technical Journal, p. Vol. 34, Issue 1, pp. 105–128, 1954.
[38] a. Mitsui and K. Sato, “Thermal stability of electrical resistance of (ZnO:Ga,Y)/(ZnO:Ga)/(ZnO:Ga,Y) multilayers for electrically heated windows,” Vacuum, vol. 74, no. 3–4, pp. 747–751, Jun. 2004.
[39] J.-Y. Juang, T.-S. Chou, H.-T. Lin, Y.-F. Chou, and C.-C. Weng, “Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet,” Appl. Surf. Sci., vol. 314, pp. 1074–1081, Sep. 2014.
[40] F. M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe,” Bell Syst. Tech. J., vol. 37, no. 3, pp. 711–718, May 1958.
[41] M. Yamashita and M. Agu, “Geometrical Correction Factor for Semiconductor Resistivity Measurements by Four-Point Probe Method,” Jpn. J. Appl. Phys., vol. 23, pp. 1499–1504, 1984.
[42] C. Hsu and Y. Yang, “The Increase of the Jet Size of an Atmospheric-Pressure Plasma Jet by Ambient Air Control,” IEEE Trans. Plasma Sci., vol. 38, no. 3, pp. 496–499, Mar. 2010.
[43] M. K. Sharma and B. K. Saikia, “Discharge conditions and emission spectroscopy of N 2 and N 2 + active species in a variable power dc pulsed plasma used for steel nitriding,” vol. 46, no. July, pp. 463–470, 2008.
[44] C. Hsu, C. Wu, C. Chen, and W. Cheng, “Mode Transition of an Atmospheric Pressure Arc Plasma Jet Sustained by Pulsed DC Power,” Jpn. J. Appl. Phys., vol. 48, no. 7, p. 076002, Jul. 2009.
[45] Y. Hsu, Y. Yang, C. Wu, and C. Hsu, “Downstream Characterization of an Atmospheric Pressure Pulsed Arc Jet,” Plasma Chem. Plasma Process., vol. 30, no. 3, pp. 363–372, Mar. 2010.
[46] C.-C. Hsu and C.-Y. Wu, “Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet,” J. Phys. D. Appl. Phys., vol. 42, no. 21, p. 215202, Nov. 2009.
[47] M. Watanabe, L. Cui, and R. H. Dauskardt, “Atmospheric plasma deposition of transparent semiconducting ZnO films on plastics in ambient air,” Org. Electron. physics, Mater. Appl., vol. 15, no. 3, pp. 775–784, 2014.
[48] M. Kumar, L. Wen, B. B. Sahu, and J. G. Han, “Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films,” Appl. Phys. Lett., vol. 106, no. 24, p. 241903, 2015.
[49] W. Ming-Dong, Z. Dao-Yun, L. Yi, Z. Lin, Z. Chang-Xi, H. Zhen-Hui, C. Di-Hu, and W. Li-Shi, “Determination of Thickness and Optical Constants of ZnO Thin Films Prepared by Filtered Cathode Vacuum Arc Deposition,” Chinese Phys. Lett., vol. 25, no. 2, pp. 743–746, 2008.
[50] R. Hong, J. Shao, H. He, and Z. Fan, “Enhancement of near-band-edge photoluminescence of ZnO thin films in sandwich configuration at room temperature,” J. Appl. Phys., vol. 99, no. 9, pp. 1–4, 2006.
[51] K. Bergum, H. Fjellvåg, and O. Nilsen, “Thickness dependent structural, optical and electrical properties of Ti-doped ZnO films prepared by atomic layer deposition,” Appl. Surf. Sci., vol. 332, pp. 494–499, 2015.
[52] E. Fortunato, A. Gonçalves, V. Assunção, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins, “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence,” Thin Solid Films, vol. 442, no. 1–2, pp. 121–126, 2003.
[53] A. Tiburcio-Silver, A. Sanchez-Juarez, and A. Avila-Garcia, “Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis,” Sol. Energy Mater. Sol. Cells, vol. 55, no. 1–2, pp. 3–10, 1998.
[54] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide,” Proc. Phys. Soc. Sect. B, vol. 67, pp. 775–782, 1954.
[55] E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., vol. 93, no. 3, pp. 632–633, 1954.
[56] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B, vol. 61, no. 22, pp. 15019–15027, 2000.
[57] A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, 1939.
[58] K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, “Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates,” Solid State Commun., vol. 127, no. 4, pp. 265–269, 2003.
[59] Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth, vol. 259, no. 4, pp. 335–342, Dec. 2003.
[60] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” J. Cryst. Growth, vol. 130, no. 1–2, pp. 269–279, 1993.
[61] W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, and Y. L. Chen, “Effect of post-annealing on the optoelectronic properties of ZnO:Ga films prepared by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 518, no. 14, pp. 3882–3885, 2010.
[62] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density,” Nanoscale, vol. 6, no. 17, p. 10224, 2014.
[63] M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films,” Thin Solid Films, vol. 280, no. 1–2, pp. 20–25, 1996.
[64] S. S. Shinde, P. S. Shinde, Y. W. Oh, D. Haranath, C. H. Bhosale, and K. Y. Rajpure, “Structural , optoelectronic , luminescence and thermal properties of Ga-doped zinc oxide thin films,” vol. 258, pp. 9969–9976, 2012.
[65] D. Das and P. Mondal, “Low temperature grown ZnO:Ga films with predominant c-axis orientation in wurtzite structure demonstrating high conductance, transmittance and photoluminescence,” RSC Adv., vol. 6, no. 8, pp. 6144–6153, 2016.
[66] E. Fortunato, P. Barquinha, a. Pimentel, a. Gonçalves, a. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films, vol. 487, no. 1–2, pp. 205–211, Sep. 2005.
[67] S. A. Studenikin, N. Golego, and M. Cocivera, “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films,” J. Appl. Phys., vol. 87, no. 5, p. 2413, 2000.
[68] T. Prasada Rao and M. C. Santhoshkumar, “Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis,” Appl. Surf. Sci., vol. 255, no. 8, pp. 4579–4584, Feb. 2009.
[69] S. Liang and X. Bi, “Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions,” J. Appl. Phys., vol. 104, no. 11, pp. 0–5, 2008.
[70] P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. K. Avasthi, “On the properties of indium doped ZnO thin films,” Semicond. Sci. Technol., vol. 20, pp. 120–126, 2004.
[71] X. Wu, “Properties of transparent conducting oxides formed from CdO and ZnO alloyed with SnO[sub 2] and In[sub 2]O[sub 3],” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 15, no. 3, p. 1057, 1997.
[72] L. L. Yang, Q. X. Zhao, G. Z. Xing, D. D. Wang, T. Wu, M. Willander, I. Ivanov, and J. H. Yang, “A SIMS study on Mg diffusion in Zn0.94Mg0.06O/ZnO heterostructures grown by metal organic chemical vapor deposition,” Appl. Surf. Sci., vol. 257, no. 20, pp. 8629–8633, 2011.
[73] J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys., vol. 51, no. 6, pp. 3134–3136, 1980.
[74] T. Yuji, S. Fujii, N. Mungkung, and H. Akatsuka, “Optical Emission Characteristics of Microwave Discharge and High-Frequency DC Pulse Discharge Plasma Jets,” IEEE Trans. Plasma Sci., vol. 37, no. 6, pp. 839–845, 2009.
[75] Y. C. Hong, H. S. Uhm, and W. J. Yi, “Atmospheric pressure nitrogen plasma jet: Observation of striated multilayer discharge patterns,” Appl. Phys. Lett., vol. 93, no. 5, p. 051504, 2008.
[76] K. D. Bayes;G. B. Kistiakowsky, “On the Mechanism of the Lewis‐Rayleigh Nitrogen Afterglow,” J. Chem. Phys., vol. 32, no. 4, pp. 992–1000, 1960.
[77] T. Terasako and S. Shirakata, “ZnO Nanowires Grown by Atmospheric Pressure Chemical Vapor Deposition Using ZnCl 2 and H 2 O as Source Materials and Their Growth Mechanisms,” Jpn. J. Appl. Phys., vol. 44, no. No. 46, pp. L1410–L1413, 2005.
[78] B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, F. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, and S. Xiaosong, “Electrodeposition from ZnO nano-rods to nano-sheets with only zinc nitrate electrolyte and its photoluminescence,” Appl. Surf. Sci., vol. 257, no. 24, pp. 10317–10321, Oct. 2011.
[79] S. A. Studenikin, N. Golego, and M. Cocivera, “Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution,” J. Appl. Phys., vol. 83, no. 4, pp. 2104–2111, 1998.
[80] A.N.ZAIDEL; V.K.PROKOEV, “Tables Of SpectrumLines.” Berlin, 1961.
[81] T. Ansbaek, D. H. Petersen, O. Hansen, J. B. Larsen, T. M. Hansen, and P. Boggild, “Fundamental size limitations of micro four-point probes,” Microelectron. Eng., vol. 86, no. 4–6, pp. 987–990, 2009.
[82] T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, “Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method.,” Phys. Rev. Lett., vol. 91, no. 3, p. 036805, 2003.
[83] D. H. Petersen, O. Hansen, R. Lin, and P. F. Nielsen, “Micro-four-point probe Hall effect measurement method,” J. Appl. Phys., vol. 104, no. 1, 2008.
[84] J.-Z. Chen, C. Wang, C.-C. Hsu, and I.-C. Cheng, “Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet,” Carbon N. Y., vol. 98, pp. 34–40, 2016.
[85] T.-J. Wu, C.-Y. Chou, C.-M. Hsu, C.-C. Hsu, J.-Z. Chen, and I.-C. Cheng, “Ultrafast synthesis of continuous Au thin films from chloroauric acid solution using an atmospheric pressure plasma jet,” RSC Adv., vol. 5, no. 121, pp. 99654–99657, 2015.
[86] H. Chang, Y. J. Yang, H. C. Li, C. C. Hsu, I. C. Cheng, and J. Z. Chen, “Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process,” J. Power Sources, vol. 234, pp. 16–22, 2013.
[87] H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Growth and characterization of Ga-doped ZnO layers on a -plane sapphire substrates grown by molecular beam epitaxy,” vol. 239, no. 30, pp. 538–543, 2002.
[88] B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, no. 1–2, pp. 107–110, 2000.
[89] T. P. Rao and M. C. S. Kumar, “Resistivity Stability of Ga Doped ZnO Thin Films with Heat Treatment in Air and Oxygen Atmospheres,” vol. 2012, no. April, pp. 72–79, 2012.
[90] W. Liao, H. Chang, Y. Yang, and C. Hsu, “Oxygen-deficient indium tin oxide thin films annealed by atmospheric pressure plasma jets with / without air-quenching,” Appl. Surf. Sci., vol. 292, pp. 213–218, 2014.
[91] T.-H. Wu, I.-C. Cheng, C.-C. Hsu, and J.-Z. Chen, “UV photocurrent responses of ZnO and MgZnO/ZnO processed by atmospheric pressure plasma jets,” J. Alloys Compd., vol. 628, pp. 68–74, 2015.
[92] S. T. Lien, J. Z. Chen, Y. J. Yang, C. C. Hsu, and I. C. Cheng, “Sol-gel derived amorphous/nanocrystalline MgZnO thin films annealed by atmospheric pressure plasma jets,” Ceram. Int., vol. 40, no. 2, pp. 2707–2715, 2014.
[93] Andrea Illiberi, Frank Grob, C. Frijters, Paul Poodt, and Ram Ramachandra, “High rate (~7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se2 thin-film solar cells with efficiency beyond 15%,” Prog. Photovolt Res. Appl., vol. 21, no. February 2013, pp. 1559–1566, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49755-
dc.description.abstract本研究使用直流脈衝電源產生之噴射式大氣電漿(Atmospheric Pressure Plasma Jet, APPJ)鍍製GZO薄膜,優點是免去高昂的真空腔體費用,且能夠透過小面積漸進式的掃描將薄膜鍍製在大面積基板上。目前許多研究指出將不同薄膜材料層層堆疊之多層膜沉積法(multi-layer deposition),能夠有效製造出高光電性質之薄膜,但礙於需更換製程材料,提高了時間及製造成本。過去我們團隊使用工研院之APPJ系統進行了一系列之機台最佳化參數研究,在本研究也使用過去研究所得之最佳參數進行前人未使用過之多次沉積法(multiple deposition)研究,此方法將使用同一材料GZO,在固定總沉積時間的條件下(deposition time)調整掃描速率與次數進行多次沉積,優點是免更換材料且製程時間短。在經性質分析與量測後,發現在光電性質上多次沉積之薄膜確實有所改善,而此方法可應用至在製程中涉及軌跡之沉積法,如:噴霧熱解法。
同時我們利用有限元素法模擬四點探針量測各層電阻率不同之多層膜,解讀每層電阻率與四點探針量測值之關係,並發現多層薄膜在廣範圍之電阻率且總厚度低於0.5倍之探針距離時,皆可被視為等效並聯電阻電路。因此在多層導電膜量測中,可在每層沉積完畢後,藉此並聯模型量測並計算,最後推得每層之電阻率。本研究中也將使用有限元素軟體模擬四點探針,改變探針之間距與排列組態,探討以四點探針量測導電薄膜厚度的可能。
本研究包含了NTU APPJ之架設與部件設計組裝,我們改善了原工研院在設計上的些許缺失,如:外罩氣流、移動平台和電漿噴嘴外加組件。並進行小面積玻璃試片製程參數基準線之校正,藉著控制主氣流量、電壓值與工作週期,來得到一最佳光電性質之組合。且我們透過膜厚量測、霍爾量測、X光繞射儀和穿透度量測,針對改變主氣流量之樣品進行分析,探討造成片電阻值變化甚巨之原因。再來便是以此參數在大面積玻璃上進行鍍膜,我們得到平均片電阻值62.8 Ω/□,可見光平均穿透度87%以上,且片電阻值均勻度為14%之GZO薄膜。
zh_TW
dc.description.abstractOne of the advantages of the Atmospheric Pressure Plasma Jet, APPJ equipped with DC pulsed power source, is free of the vacuum chamber and is used to deposit Ga-doped ZnO(GZO)thin films in open air. By depositing small area thin films step by step, we can have a large area thin films. Recent research shows that the multi-layer deposition method, which stack materials with different characteristics together, can achieve better electrical and optical properties. However, the multilayer deposition often requires using different material as the buffer layer, which may increase the process time, tool complexity and materials cost. Here we studied the feasibility of enhancing the film properties and deposition rate by multiple depositions using only GZO, and adjusting the scanning speed and times. We find that both the deposition rate and the films properties are significantly improved. The method can be applied to other methods that involve scanning trajectory, such as spray pyrolysis.
In this thesis, we conduct three-dimensional finite element simulations on conductive multilayer films to study the relationship between the reading of the four-point probe and the conductivity of the individual layers. We find that a multilayer film may be modeled as a simple equivalent circuit with multiple resistances connected in parallel for a wide range of resistivity and thickness ratios as long as its total thickness is smaller than approximately half of the probe spacing. As a result we may determine the resistivity of each layer sequentially by applying the four-point probe, with the original correction factor π/ln(2), after deposition of each layer. Also, we use FEM and simulate the four-point probe by changing the probe spacing and configuration to discuss the possibility of measuring films thickness by four-point probe.
The thesis discusses the assembling and design of NTU APPJ. We improve some defects of ITRI APPJ such as, exhaust system, moving stage and jet additional prats. We established a fabrication baseline using small area substrates, which will be used as a basis for further optimization of the parameters. By controlling the main gas, voltage and duty cycle, it comes out the best films properties. Also, we measured the thickness, Hall measurement, XRD and transmittance to find out the reasons of the low sheet resistance of samples in low main gas flow rate. At last, we conduct the large area deposition with the baseline parameters, and obtain an average sheet resistance of 62.8 Ω/□, average transmittance in visible region over 87%, and the uniformity 14%, for GZO thin films.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:46:17Z (GMT). No. of bitstreams: 1
ntu-105-R03522514-1.pdf: 8138724 bytes, checksum: 9150ca4b301865b8238632d438502c2e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 VIII
符號表 XIII
第一章 緒論 1
1.1 透明導電薄膜 1
1.2 透明導電薄膜製備方法 3
1.3 四點探針 5
1.4 四點探針量測之限制 6
1.5 研究動機與目的 7
第二章 文獻回顧與理論基礎 9
2.1 文獻回顧 9
2.2 GZO薄膜的結構與光電特性 11
2.3 薄膜沉積理論 13
2.4 大氣電漿 15
2.5 四點探針之理論與參數推導 16
第三章 實驗方法、儀器設備架設與有限元素法設定 21
3.1 實驗流程圖 21
3.2 NTU APPJ架設與薄膜鍍製 24
3.3 薄膜檢測分析設備 31
3.3.1 膜厚分析 31
3.3.2 電性分析 31
3.3.3 晶體結構分析 32
3.3.4 表面化學分析 33
3.3.5 光學分析 34
3.3.6 電漿放射光譜儀 35
3.3.7 縱深元素分析 35
3.4 有限元素法模型的建立 37
3.4.1 基本假設與四點探針量測模型的建立 37
3.4.2 有限元素模型的驗證 38
3.4.3 邊界條件的設定 38
3.4.4 多層膜模型建立與參數調整 40
第四章 結果與討論 42
4.1 NTU APPJ之架設與薄膜鍍製 42
4.1.1 NTU APPJ的架設 42
4.1.2 NTU APPJ之薄膜鍍製 49
4.1.3 主氣流量之影響 52
4.1.4 電壓值與工作週期之影響 59
4.2 多層GZO沉積對光電性質之影響 65
4.2.1 膜厚分析 65
4.2.2 結晶型態分析 66
4.2.3 鍵結型態分析 68
4.2.4 電性分析 74
4.2.5 光學性質分析 75
4.2.6 縱深元素分佈分析 77
4.2.7 電漿光譜分析 80
4.3 以有限元素法分析不均勻多層導電薄膜並建立等效並聯電阻 83
4.3.1 模型厚度、幾何形狀和探針間距對較正參數之影響 83
4.3.2 參數化厚度與電阻率之多層膜對於並聯模型適用性的影響 91
4.4 以有限元素法模擬四點探針量測薄膜厚度 97
4.4.1 改變直線排列探針之距離 97
4.4.2 改變探針組態 101
第五章 結論與未來展望 103
5.1 結論 103
5.2 未來展望 105
參考文獻 106
附錄 118
著作目錄 124
dc.language.isozh-TW
dc.title噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬zh_TW
dc.titleDevelopment of NTU APPJ System, Measurement and Simulation of the Properties of Ga-doped ZnO films Prepared by Multiple Depositionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬劍清,李明蒼,蘇育全,陳奕君
dc.subject.keyword多層薄膜,有限元素法,噴射式大氣電漿,GZO,四點探針,zh_TW
dc.subject.keywordmultilayer thin films,finite element method,APPJ,GZO,four-point probe,en
dc.relation.page132
dc.identifier.doi10.6342/NTU201602432
dc.rights.note有償授權
dc.date.accepted2016-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
7.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved