請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲(Cheng-Che Hsu) | |
| dc.contributor.author | Min-Chun Chen | en |
| dc.contributor.author | 陳旻均 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:45:15Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | 1. Raĭzer, I. U. P., Gas discharge physics. Springer-Verlag: Berlin; New York, 1991.
2. Tachibana, K., Current status of microplasma research. IEEJ Trans. Electr. Electron. Eng. 2006, 1, 145-155. 3. Shimizu, Y.; Bose, A. C.; Mariotti, D.; Sasaki, T.; Kirihara, K.; Suzuki, T.; Terashima, K.; Koshizaki, N., Reactive evaporation of metal wire and microdeposition of metal oxide using atmospheric pressure reactive microplasma jet. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 2006, 45, 8228-8234. 4. Al-Bataineh, S. A.; Szili, E. J.; Gruner, P. J.; Priest, C.; Griesser, H. J.; Voelcker, N. H.; Short, R. D.; Steele, D. A., Fabrication and Operation of a Microcavity Plasma Array Device for Microscale Surface Modification. Plasma Process. Polym. 2012, 9, 638-646. 5. Hsu, D. D.; Graves, D. B., Microhollow cathode discharge stability with flow and reaction. J. Phys. D-Appl. Phys. 2003, 36, 2898-2907. 6. Staack, D.; Farouk, B.; Gutsol, A.; Fridman, A., Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Sci. Technol. 2005, 14, 700-711. 7. Chang, H. W.; Hsu, C. C., Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour. J. Phys. D-Appl. Phys. 2012, 45. 8. Yang, Y. J.; Kao, P. K.; Hsu, C. C., A Low-Cost and Flexible Microplasma Generation Device to Create Hydrophobic/Hydrophilic Contrast on Nonflat Surfaces. J. Microelectromech. Syst. 2015, 24, 1678-1680. 9. Kim, C. H.; Kwon, S.; Bahn, J. H.; Lee, K.; Jun, S. I.; Rack, P. D.; Baek, S. J., Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl. Phys. Lett. 2010, 96. 10. Kim, J. Y.; Kim, S. O.; Wei, Y. Z.; Li, J. H., A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy. Appl. Phys. Lett. 2010, 96. 11. Choi, J.; Mohamed, A. A. H.; Kang, S. K.; Woo, K. C.; Kim, K. T.; Lee, J. K., 900-MHz Nonthermal Atmospheric Pressure Plasma Jet for Biomedical Applications. Plasma Process. Polym. 2010, 7, 258-263. 12. Krähling, T.; Michels, A.; Geisler, S.; Florek, S.; Franzke, J., Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge. Analytical Chemistry 2014, 86, 5822-5828. 13. Kao, P. K.; Hsu, C. C., Battery-Operated, Portable, and Flexible Air Microplasma Generation Device for Fabrication of Microfluidic Paper-Based Analytical Devices on Demand. Analytical Chemistry 2014, 86, 8757-8762. 14. Mitra, B.; Levey, B.; Gianchandani, Y. B., Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing. IEEE Trans. Plasma Sci. 2008, 36, 1913-1924. 15. Roth, J. R., Industrial plasma engineering. 1 1. Institute of Physics Publishing: Bristol, 1995. 16. Lieberman, M. A.; Lichtenberg, A. J., Principles of plasma discharges and materials processing. Wiley: New York, 1994. 17. Peter, B.; Christophe, L., Non-thermal plasmas in and in contact with liquids. Journal of Physics D: Applied Physics 2009, 42, 053001. 18. An, W.; Baumung, K.; Bluhm, H., Underwater streamer propagation analyzed from detailed measurements of pressure release. J. Appl. Phys. 2007, 101. 19. Bruggeman, P.; Liu, J. J.; Degroote, J.; Kong, M. G.; Vierendeels, J.; Leys, C., Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J. Phys. D-Appl. Phys. 2008, 41. 20. Chang, H. W.; Hsu, C. C., Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior. Plasma Sources Sci. Technol. 2011, 20. 21. Verreycken, T.; van Gessel, A. F. H.; Pageau, A.; Bruggeman, P., Validation of gas temperature measurements by OES in an atmospheric air glow discharge with water electrode using Rayleigh scattering. Plasma Sources Sci. Technol. 2011, 20. 22. Cserfalvi, T.; Mezei, P.; Apai, P., Emission studies on a glow-discharge in atmospheric-pressure air using water as a cathode. J. Phys. D-Appl. Phys. 1993, 26, 2184-2188. 23. He, Q.; Zhu, Z.; Hu, S., Flowing and Nonflowing Liquid Electrode Discharge Microplasma for Metal Ion Detection by Optical Emission Spectrometry. Applied Spectroscopy Reviews 2013, 49, 249-269. 24. Park, Y. S.; Ku, S. H.; Hong, S. H.; Kim, H. J.; Piepmeier, E. H., Fundamental studies of electrolyte-as-cathode glow discharge-atomic emission spectrometry for the determination of trace metals in flowing water. Spectroc. Acta Pt. B-Atom. Spectr. 1998, 53, 1167-1179. 25. Kim, H. J.; Lee, J. H.; Kim, M. Y.; Cserfalvi, T.; Mezei, P., Development of open-air type electrolyle-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water. Spectroc. Acta Pt. B-Atom. Spectr. 2000, 55, 823-831. 26. He, Q.; Zhu, Z. L.; Hu, S. H.; Zheng, H. T.; Jin, L. L., Elemental Determination of Microsamples by Liquid Film Dielectric Barrier Discharge Atomic Emission Spectrometry. Analytical Chemistry 2012, 84, 4179-4184. 27. Mezei, P.; Cserfalvi, T.; Kim, H. J.; Mottaleb, M. A., The influence of chlorine on the intensity of metal atomic lines emitted by an electrolyte cathode atmospheric glow discharge. Analyst 2001, 126, 712-714. 28. Cserfalvi, T.; Mezei, P., Operating mechanism of the electrolyte cathode atmospheric glow discharge. Fresenius J. Anal. Chem. 1996, 355, 813-819. 29. Cserfalvi, T.; Mezei, P., Investigations on the element dependency of sputtering process in the electrolyte cathode atmospheric discharge. Journal of Analytical Atomic Spectrometry 2005, 20, 939-944. 30. Bruggeman, P.; Guns, P.; Degroote, J.; Vierendeels, J.; Leys, C., Influence of the water surface on the glow-to-spark transition in a metal-pin-to-water electrode system. Plasma Sources Sci. Technol. 2008, 17. 31. Peter, B.; Eva, R.; Alan, M.; Joris, D.; Alexander, M.; Robby, R.; Jan, V.; Christophe, L., Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Science and Technology 2008, 17, 025012. 32. Peter, B.; Joris, D.; Jan, V.; Christophe, L., DC-excited discharges in vapour bubbles in capillaries. Plasma Sources Science and Technology 2008, 17, 025008. 33. Wang, Z.; Gai, R.; Zhou, L.; Zhang, Z., Design modification of a solution-cathode glow discharge-atomic emission spectrometer for the determination of trace metals in titanium dioxide. Journal of Analytical Atomic Spectrometry 2014, 29, 2042-2049. 34. Jenkins, G.; Manz, A., A miniaturized glow discharge applied for optical emission detection in aqueous analytes. J. Micromech. Microeng. 2002, 12, N19-N22. 35. Jenkins, G.; Franzke, J.; Manz, A., Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip. Lab on a Chip 2005, 5, 711-718. 36. Wilson, C. G.; Gianchandani, Y. B., Spectral detection of metal contaminants in water using an on-chip microglow discharge. Electron Devices, IEEE Transactions on 2002, 49, 2317-2322. 37. Eun, C. K.; Gianchandani, Y. B., Microdischarge-Based Sensors and Actuators for Portable Microsystems: Selected Examples. IEEE J. Quantum Electron. 2012, 48, 814-826. 38. Que, L.; Wilson, C. G.; Gianchandani, Y. B., Microfluidic electrodischarge devices with integrated dispersion optics for spectral analysis of water impurities. J. Microelectromech. Syst. 2005, 14, 185-191. 39. Gianchandani, Y. B.; Wright, S. A.; Eun, C. K.; Wilson, C. G.; Mitra, B., Exploring microdischarges for portable sensing applications. Anal Bioanal Chem 2009, 395, 559-575. 40. Yagov, V. V.; Korotkov, A. S.; Zuev, B. K.; Myasoedov, B. F., Drop-spark discharge: an atomization and excitation source for atomic emission sensors. Mendeleev Communications 1998, 8, 161-162. 41. Yagov, V. V.; Getsina, M. L.; Zuev, B. K., Use of electrolyte jet cathode glow discharges as sources of emission spectra for atomic emission detectors in flow-injection analysis. J. Anal. Chem. 2004, 59, 1037-1041. 42. Jo, K. W.; Kim, M. G.; Shin, S. M.; Lee, J. H., Microplasma generation in a sealed microfluidic glass chip using a water electrode. Appl. Phys. Lett. 2008, 92. 43. Kitano, A.; Iiduka, A.; Yamamoto, T.; Ukita, Y.; Tamiya, E.; Takamura, Y., Highly Sensitive Elemental Analysis for Cd and Pb by Liquid Electrode Plasma Atomic Emission Spectrometry with Quartz Glass Chip and Sample Flow. Analytical Chemistry 2011, 83, 9424-9430. 44. Kohara, Y.; Terui, Y.; Ichikawa, M.; Shirasaki, T.; Yamamoto, K.; Yamamoto, T.; Takamura, Y., Characteristics of liquid electrode plasma for atomic emission spectrometry. Journal of Analytical Atomic Spectrometry 2012, 27, 1457-1464. 45. Kohara, Y.; Terui, Y.; Ichikawa, M.; Yamamoto, K.; Shirasaki, T.; Kohda, K.; Yamamoto, T.; Takamura, Y., Atomic emission spectrometry in liquid electrode plasma using an hourglass microchannel. Journal of Analytical Atomic Spectrometry 2015, 30, 2125-2128. 46. Van Khoai, D.; Yamamoto, T.; Ukita, Y.; Takamura, Y., On-chip solid phase extraction–liquid electrode plasma atomic emission spectrometry for detection of trace lead. Japanese journal of applied physics 2014, 53, 05FS01. 47. Van Khoai, D.; Miyahara, H.; Yamamoto, T.; Tue, P. T.; Okino, A.; Takamura, Y., Development of AC-driven liquid electrode plasma for sensitive detection of metals. Japanese Journal of Applied Physics 2016, 55. 48. Staack, D.; Fridman, A.; Gutsol, A.; Gogotsi, Y.; Friedman, G., Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy. Angew. Chem.-Int. Edit. 2008, 47, 8020-8024. 49. Kanzaki, Y.; Hirabe, M.; Matsumoto, O., GLOW-DISCHARGE ELECTROLYSIS OF AQUEOUS SULFURIC-ACID-SOLUTION IN VARIOUS ATMOSPHERE. J. Electrochem. Soc. 1986, 133, 2267-2270. 50. Marcus, R. K.; Davis, W. C., An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Analytical Chemistry 2001, 73, 2903-2910. 51. Huang, R. M.; Zhu, Z. L.; Zheng, H. T.; Liu, Z. F.; Zhang, S. C.; Hu, S. H., Alternating current driven atmospheric-pressure liquid discharge for the determination of elements with optical emission spectrometry. Journal of Analytical Atomic Spectrometry 2011, 26, 1178-1182. 52. Wu, J.; Yu, J.; Li, J.; Wang, J. P.; Ying, Y. B., Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 1269-1272. 53. Van Khoai, D.; Kitano, A.; Yamamoto, T.; Ukita, Y.; Takamura, Y., Development of high sensitive liquid electrode plasma – Atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration. Microelectronic Engineering 2013, 111, 343-347. 54. Xiong, J. J.; Huang, P. C.; Zhang, C. Y.; Wu, F. Y., Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sens. Actuator B-Chem. 2016, 226, 30-36. 55. Guo, X. F.; Yun, Y. H.; Shanov, V. N.; Halsall, H. B.; Heineman, W. R., Determination of Trace Metals by Anodic Stripping Voltammetry Using a Carbon Nanotube Tower Electrode. Electroanalysis 2011, 23, 1252-1259. 56. Yu, L.; Laux, C. O.; Packan, D. M.; Kruger, C. H., Direct-current glow discharges in atmospheric pressure air plasmas. J. Appl. Phys. 2002, 91, 2678-2686. 57. Laux, C. O.; Spence, T. G.; Kruger, C. H.; Zare, R. N., Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci. Technol. 2003, 12, 125-138. 58. Aubert, X.; Bauville, G.; Guillon, J.; Lacour, B.; Puech, V.; Rousseau, A., Analysis of the self-pulsing operating mode of a microdischarge. Plasma Sources Sci. Technol. 2007, 16, 23-32. 59. Chabert, P.; Lazzaroni, C.; Rousseau, A., A model for the self-pulsing regime of microhollow cathode discharges. J. Appl. Phys. 2010, 108. 60. Fridman, A. A., Plasma chemistry. Cambridge University Press: Cambridge; New York, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49739 | - |
| dc.description.abstract | 常壓下微電漿不需要真空系統,且因電子密度和能量密度高而具有局部高反應性,近年來有越來越多微電漿相關的研究。此外,因為電漿具有激發而放光的特性,常利用光譜來分析電漿的資訊。
本研究即是結合微電漿系統與光譜做出對於液體中金屬成分之定性以及定量分析,並利用設計過之電池驅動直流電路以及手機平台光譜儀,使整個系統成為完全的可攜式裝置,不僅有成本低的優點,也藉由可攜式電漿裝置使電漿不再只是以往受限於實驗室中的檢測,可以被更多人關注、被更多人拿來應用於生活周遭的問題上。 本研究之微電漿系統直接以待測物作為其中一個電極並在兩電極間施加高壓,因瞬間高溫將待測物汽化並受到加速電子撞擊而產生電漿。其中,金屬原子被激發後會放出不同顏色的光,這些特徵光由於能量上的差異而具有不同的波長。經由光譜儀收取電漿產生的激發光後分光,得到波長對光強度的光譜圖再加以比對分析而可檢測待測物中的元素。本研究透過改變不同的條件以及裝置的設計,達到較穩定隨時間變化之光譜與較強金屬特徵光的實驗結果,有利於金屬的定量分析。 本研究所設計之手機平台光譜儀,利用手機的相機取代光譜儀的感光元件,使光源通過特殊微結構之光柵,於表面繞射後分離不同波長的光再經由手機相機拍照,得到的分光照片經由程式分析及運算可以將照片轉換至波長對光強度作圖,雖然解析度不會超越實驗室中精密光譜儀但依然有半高寬在10奈米以內的解析度。因為現今社會中人手一台手機的狀況,利用此手機平台光譜儀會讓整體操作更方便且更容易上手,而且只要在手機上裝設微電漿裝置即可達到隨拍隨測重金屬的優點,若將整體系統達到簡單、對使用者友善(user-friendly)的操作條件後,將此微電漿應用商品化的目標則更有機會實現。 | zh_TW |
| dc.description.abstract | Since atmospheric microplasma system does not need vacuum system, and has unique properties such as high electron density, high power density, highly reactive environment in a local area, and light emitted from plasma, there are lots of efforts made on microplasma-related research and accompanied with optical emission spectroscopy (OES) recently.
In this thesis, the combination of pin-to-water microplasma system and OES analysis is studied for qualitative and quantitative detection of metallic ions in aqueous solution. By using the designed battery-driven DC circuit and the phone-based spectrometer, the device can be thoroughly portable and low-cost. With the advantages, the portable plasma system is not only used for in-situ analysis in laboratory, but it also get more attentions from people and have more applications in our daily life. In the system, the aqueous solution contained metallic ions is directly served as one electrode, and we apply high voltage between two electrodes. When the plasma is ignited, temperature rises instantly and vaporizes the solution into plasma area. Vapor from solution is collided with accelerated electrons and then emit light in a spectrum characteristic of the gas being excited. The light emitted from plasma will have many different colors due to the differences in excitation energy of metallic atoms. Therefore, spectrometer disperses the light with wavelengths and gets spectrum which will be used to detect components in solutions. By changing the design of device and electrodes arrangements, we get more reliable results about time-resolved spectrum and stronger characteristic peaks of metallic emission to do quantitative analysis in our system. Our designed phone-based spectrometer replaces CCD with camera in mobile phone, and uses grating with particular microstructure to disperse light with different wavelength. After taking pictures of dispersion, the data will be processed by designed program code and transform pixel number of pictures into wavelength to obtain the relationship between .wavelength and light intensity. Although the resolution of phone-based spectrometer is not better than of laboratory-scale spectrometer, the FWHM (full width at half maximum) of a characteristic peak is still below 10 nm that the resolution is good enough to deal with lots of situation. Moreover, smart phones are now so commonplace that if we improve our operating system to more user-friendly and convenient way, we can achieve the goals to commercialize our research and detect metallic ions at any time and any places. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:45:15Z (GMT). No. of bitstreams: 1 ntu-105-R03524017-1.pdf: 4011106 bytes, checksum: fa23eff6fa06d1b0e137bf99445aa1d3 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 I 中文摘要 III ABSTRACT V 目錄 VII 圖目錄 XI 表目錄 XVII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 5 2.1 電漿簡介1 5 2.2 微電漿簡介 8 2.2.1 微電漿系統種類 8 2.2.2 微電漿系統應用 11 2.3 直流電微電漿系統 14 2.3.1 直流輝光放電1, 15, 16 14 2.3.2 直流電放電特徵曲線15 17 2.4 水溶液電漿 19 2.4.1 水溶液電漿簡介 19 2.4.2 液相電極氣相放電之微電漿系統 23 2.5 針尖至水之微電漿系統檢測重金屬 25 2.5.1 針尖至水之電漿系統 25 2.5.2 針尖至水微電漿結合微流道 29 2.5.3 其他微電漿系統檢測重金屬 31 2.6 其他常見之重金屬檢測 36 2.6.1 實驗室級重金屬檢測方法 36 2.6.2 市售重金屬檢測設備 40 第 3 章 實驗設備與架構 45 3.1 針尖至水之微電漿裝置 45 3.1.1 微電漿系統 45 3.1.2 直流電源供應系統 48 3.2 電漿檢測設備 49 3.2.1 電性檢測 49 3.2.2 光學檢測 49 3.2.3 手機平台光譜儀 51 3.3 化學藥品 52 第 4 章 實驗結果與討論 53 4.1 針尖至水微電漿之檢測 53 4.1.1 電壓電流波形 53 4.1.2 金屬特徵光譜分析 56 4.1.3 溶液導電度與pH值影響 58 4.1.4 隨時間變化之光譜分析 60 4.2 針尖至水微電漿之裝置分析 62 4.2.1 極性之影響 62 4.2.2 針尖方向對光譜之影響 66 4.2.3 重金屬之定量分析 69 4.3 可攜式手機平台光譜儀之電漿檢測 74 第 5 章 結論與未來展望 81 第 6 章 參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 手機平台光譜儀 | zh_TW |
| dc.subject | 微電漿 | zh_TW |
| dc.subject | 金屬特徵光 | zh_TW |
| dc.subject | 光譜分析 | zh_TW |
| dc.subject | spectrum | en |
| dc.subject | phone-based spectrometer | en |
| dc.subject | metallic ion | en |
| dc.subject | characteristic peaks | en |
| dc.subject | microplasma | en |
| dc.title | 利用電漿光譜技術之手機式金屬離子檢測裝置之建立 | zh_TW |
| dc.title | Development of a Smartphone-Based Metallic Ion Detection Device Using Plasma Emission Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),陳奕君(I-Chun Cheng) | |
| dc.subject.keyword | 微電漿,光譜分析,金屬特徵光,手機平台光譜儀, | zh_TW |
| dc.subject.keyword | microplasma,spectrum,characteristic peaks,metallic ion,phone-based spectrometer, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201602486 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
