Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49717
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑
dc.contributor.authorChia-Hsiem Tsaien
dc.contributor.author蔡佳憲zh_TW
dc.date.accessioned2021-06-15T11:43:51Z-
dc.date.available2018-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-12
dc.identifier.citation[1] Norwood OT. Incidence of female androgenetic alopecia (female pattern alopecia). Dermatol Surg. 2001;27:53-54.
[2] Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150:186-194.
[3] Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341:491-497.
[4] Rousso DE, Kim SW. A review of medical and surgical treatment options for androgenetic alopecia. JAMA facial plastic surgery. 2014;16:444-450.
[5] Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998;95:605-614.
[6] Kobielak K, Pasolli, H. A., Alonso, L., Polak, L. and Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163:609-623.
[7] Pan YL, M. H.Tian, X.Cheng, H. T.Gridley, T.Shen J, Kopan R. gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell. 2004;7:731-743.
[8] St-Jacques B, Dassule, H. R., Karavanova, I., Botchkarev, V. A.,Li, J., Danielian, P. S., McMahon, J. A., Lewis, P. M., Paus, R., and McMahon, A. P. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998;8:1058-1069.
[9] Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. The Journal of investigative dermatology. 2001;117:3-15.
[10] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-926.
[11] Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. The Journal of investigative dermatology. 1991;96:77s-78s.
[12] Yoo B-Y, Shin Y-H, Yoon H-H, Seo Y-K, Park J-K. Hair multiplication with dermal papilla like tissue containing human dermal papilla cells. Biotechnol Bioproc E. 2014;19:394-403.
[13] Hardy MH. The development of mouse hair in vitro with some observations on pigmentation. J Anat. 1949;83:364-384.
[14] Philpott MP, Westgate GE, Kealey T. An in Vitro Model for the Study of Human Hair Growth. Annals of the New York Academy of Sciences. 1991;642:148-164.
[15] Sakaguchi I, Ishimoto, H., Matsuo, M., Ikeda, N., Minamino, M. and Kato, Y. The water-soluble extract of Illicium anisatum stimulates mouse vibrissae follicles in organ culture. Exp Dermatol. 2004;13:499-504.
[16] Jahoda CAB, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311:560-562.
[17] McElwee KJ, Kissling, S., Wenzel, E., Huth, A. and Hoffmann, R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. The Journal of investigative dermatology. 2003;121:1267-1275.
[18] Inamatsu M, Matsuzaki, T., Iwanari, H. and Yoshizato, K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. The Journal of investigative dermatology. 1998;111:767-775.
[19] Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 2008;22:543-557.
[20] Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 2000;14:1181-1185.
[21] Osada A, Iwabuchi, T., Kishimoto, J., Hamazaki, T. S. and Okochi, H. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng. 2007;13:975-982.
[22] Qiao J, Turetsky A, Kemp P, Teumer J. Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen Med. 2008;3:683-692.
[23] Havlickova B, Biro, T., Mescalchin, A., Arenberger, P. and Paus, R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. Br J Dermatol. 2004;151:753-765.
[24] Zhang S, Liu, P., Chen, L., Wang, Y., Wang, Z. and Zhang, B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 2015;41:15-25.
[25] Karp JM, Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K. Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R. and Khademhosseini, A. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip. 2007;7:786-794.
[26] Cohen J. The transplantation of individual rat and guineapig whisker papillae. J Embryol Exp Morphol. 1961;9:117-127.
[27] Jahoda CA, Oliver, R. F., Reynolds, A. J., Forrester, J. C., Gillespie, J. W., Cserhalmi-Friedman, P. B., Christiano, A. M., Horne, K. A. Trans-species hair growth induction by human hair follicle dermal papillae. Exp Dermatol. 2001;10:229-237.
[28] Ehama R, Ishimatsu-Tsuji, Y., Iriyama, S., Ideta, R., Soma, T., Yano, K., Kawasaki, C., Suzuki, S., Shirakata, Y., Hashimoto, K. and Kishimoto, J. Hair follicle regeneration using grafted rodent and human cells. The Journal of investigative dermatology. 2007;127:2106-2115.
[29] Morris RJ, Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J. S., Sawicki, J. A. and Cotsarelis, G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411-417.
[30] Inoue K, Kato, H., Sato, T., Osada, A., Aoi, N., Suga, H., Eto, H., Gonda, K. and Yoshimura, K. Evaluation of animal models for the hair-inducing capacity of cultured human dermal papilla cells. Cells Tissues Organs. 2009;190:102-110.
[31] Qiao J, Philips E, Teumer J. A graft model for hair development. Exp Dermatol. 2008;17:512-518.
[32] Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27-53.
[33] Cooley J. Follicular cell implantation: an update on 'hair follicle cloning'. Facial Plast Surg Clin North Am. 2004;12:219-224.
[34] Li M, Liu JY, Wang S, Xu H, Cui L, Lv S, Xu J, Liu S, Chi G, Li Y. Multipotent neural crest stem cell-like cells from rat vibrissa dermal papilla induce neuronal differentiation of PC12 cells. BioMed research international. 2014;2014:186239.
[35] Hsieh C-H, Wang J-L, Huang Y-Y. Large-scale cultivation of transplantable dermal papilla cellular aggregates using microfabricated PDMS arrays. Acta Biomaterialia. 2011;7:315-324.
[36] Jahoda CA, Reynolds, A.J., Chaponnier, C., Forester, J.C. and Gabbiani, G. Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of Cell Science. 1991;99:627-636.
[37] Kishimoto J, Ehama, R., Wu, L., Jiang, S., Jiang, N. and Burgeson, R. E. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci U S A. 1999;96:7336-7341.
[38] Ohyama M, Kobayashi T, Sasaki T, Shimizu A, Amagai M. Restoration of the intrinsic properties of human dermal papilla in vitro. Journal of Cell Science. 2012;125:4114-4125.
[39] Yen CM, Chan CC, Lin SJ. High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials. 2010;31:4341-4352.
[40] Jahoda CA, Oliver RF. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol. 1984;79:211-224.
[41] Wu M-H. Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surface and Interface Analysis. 2009;41:11-16.
[42] Futrega, Kathryn, Palmer, S. J, Kinney, Mackenzie, Lott, B. W, Ungrin, D. M, Zandstra, W. P, Doran, R. M. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials. 2015;62:1-12.
[43] Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, Liu B, Hu Z, Xing M. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration. ACS applied materials & interfaces. 2016;8:5906-5916.
[44] Tobin DJ, Gunin A, Magerl M, Handijski B, Paus R. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. The Journal of investigative dermatology. 2003;120:895-904.
[45] Aasen T, Izpisua Belmonte JC. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc. 2010;5:371-382.
[46] Rishikaysh P, Dev, K.Diaz, D.Qureshi, W. M.Filip and S.Mokry, J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15:1647-1670.
[47] Mahjour SB, Ghaffarpasand F, Wang H. Hair follicle regeneration in skin grafts: current concepts and future perspectives. Tissue Eng Part B Rev. 2012;18:15-23.
[48] Yoo B-Y, Shin, Youn-Ho, Yoon, Hee-Hoon, Seo, Young-Kwon, Park, Jung-Keug. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochemical Engineering Journal. 2010;48:323-331.
[49] Millar SE. Molecular mechanisms regulating hair follicle development. The Journal of investigative dermatology. 2002;118:216-225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49717-
dc.description.abstract禿髮的發生不僅會失去毛髮的功能,更會對患者產生巨大的心理負擔,而在組織工程上製作支架並使毛囊再生的概念也成為一個可行的方法。成功的毛囊新生,需要有誘導力的真皮細胞及具有分化力的表皮細胞進行表皮-間葉組織的交互作用才能發生。在毛囊重建工程上,屬於特化間葉組織的真皮乳頭細胞十分廣泛的被應用,然而在體外培養數代後誘導能力會快速的消退。相比於傳統的平面培養,三維空間的培養更能模擬細胞真實生長的環境,也能加強細胞之間與胞外基質的交互作用。
因此本研究的目的希望可以培養出真皮乳頭微球組織,並有高產量、大小均一等特點。由於聚二甲基矽氧烷(PDMS)本身具有良好的生物相容性及細胞的低貼附性,藉由直接將PDMS塗層在96孔盤,並施加微弱搖晃使中央部分形成高細胞密度並聚縮成微組織。我們發現當控制細胞密度在3000/well下,不論大鼠或人類真皮乳頭細胞皆可以產生與活體大小相近的微組織,在短時間的培養甚至是十天以上,大部分的真皮乳頭細胞皆能保有其生長活性。為了確認在此培養方法下的微組織保有誘導毛囊新生的能力,我們對此進行免疫螢光染色進行真皮乳頭細胞標定物的分析,像是α-SMA、Versican、Vimentin等都有明顯表現。
同時我們以凍融、洗滌劑及生物酶的綜合去細胞處理程序來製作真皮的去細胞支架,經過DNA及GAG含量測定分析後,證實我們確實去除了絕大多數的細胞並保有大部分的胞外基質。此外結合以雷射雕刻的PDMS微孔陣列,藉由事先的設計我們便能讓真皮乳頭微組織在此支架上有特定的排列。因此本實驗的設計及後續的培養方式,確實能夠產生大量的真皮乳頭微組織,保有其誘導毛囊新生能力,並能在之後應用於毛囊重建工程上。
zh_TW
dc.description.abstractHair loss, also called alopecia not only loses function of hair but also cause physiological impacts on the patient. Fabrication of scaffold for regeneration of hair follicle by tissue engineering provides a promising alternative. Successful hair follicle (HF) neogenesis depends on the existence of both capable dermal cells and competent epidermal keratinocytes through epithelial–mesenchymal interaction.
Dermal papilla (DP) is a highly specialized mesenchymal cell population and widely applied for hair follicle regeneration engineering. However, DP cells tend to lose their inductivity in vitro. Three-dimensional (3D) culture system mimics real microenvironment and cell−extracellular matrix (ECM) interactions are enhanced compared to two-dimensional (2D) monolayers culture.
The aim of this study was to construct a strategy for DP microtissues which are high-throughput and can be produced in uniform-sized manner. Due to high biocompatibility and low cell attachment of Poly(dimethylsiloxane) (PDMS), local high cell density is observed and cellular aggregates are formed by direct PDMS coating on 96-well plate and weak shear force application. We found that both rat and human dermal papilla microtissues grow as in vivo size under 3000/well operation condition. Most cells still represented viable within the microtissues for short-term culture. To confirm the preservation of inductivity of DP microtissues, we conducted immune-fluorescent staining and found that specific markers, such as α-SMA, Versican and Vimentin are expressed.
Furthermore, acellular dermal scaffold was fabricated by serial steps of decellularization. By DNA and GAGs content analysis, we ensured native cells are almost removed but keeps ECM intact. Besides, laser-fabricated PDMS micro-array makes microtissues grow in specific arrangement. Hence we can generate large-scale DP microtissues by PDMS low attachment 3D culture and have high potential for hair follicle regeneration engineering.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:43:51Z (GMT). No. of bitstreams: 1
ntu-105-R03548001-1.pdf: 3516752 bytes, checksum: 877dc9728f318d959e693cd182e491df (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 序論 1
1.1 毛髮 1
1.1.1 禿髮 1
1.1.2 治療手段 2
1.1.2.1 藥物治療 2
1.1.2.2 自體頭髮移植 3
1.2 毛囊 4
1.2.1 毛囊結構 4
1.2.2 型態發育學(Morphogenesis) 4
1.2.3 毛髮週期(Hair cycle) 5
1.3 毛囊組織工程 6
1.3.1 組織工程 6
1.3.2 毛囊幹細胞 7
1.3.3 體外培養(In vitro) 8
1.3.4 毛囊重建 9
1.3.5 動物實驗模型(In vivo) 10
1.4 聚二甲基矽氧烷 11
1.5去細胞化 12
第二章 研究概述 13
2.1 研究背景 13
2.2 研究動機與目的 13
2.3 方法簡述 14
2.4 流程圖 15
第三章 實驗材料與方法 16
3.1 實驗藥品 16
3.2 實驗儀器 18
3.3 大鼠鬍鬚毛囊真皮乳頭細胞之分離與培養 19
3.4新生小鼠角質細胞之分離與培養 19
3.5 人類毛囊真皮乳頭細胞培養 20
3.6 細胞低貼附性之96孔盤的製備 20
3.7 PDMS 微孔陣列的製備 20
3.8 真皮乳頭細胞成球培養 21
3.9 細胞生存力染色 21
3.10免疫螢光染色 21
3.11掃描式電子顯微鏡 24
3.12 去細胞真皮支架製備 24
3.13 GAG含量測試 25
3.14 DNA含量測試 26
3.15 蘇木紫-伊紅染色分析 27
3.16 動物實驗 28
第四章 結果與討論 29
4.1 大鼠鬍鬚真皮乳頭細胞之初代培養 29
4.2 新生小鼠角質細胞培養及觀察 29
4.3 人類毛囊真皮乳頭細胞觀察 30
4.4 真皮乳頭細胞培養至細胞低貼附性之96孔盤的形態觀察 30
4.5 不同細胞量對微組織的形態及大小影響 31
4.6 真皮乳頭微組織活性分析 32
4.7 In vitro培養下真皮乳頭誘導毛囊再生之能力 33
4.8 真皮乳頭與角質細胞共培養的影響 34
4.9 去細胞真皮支架形態及性質分析 35
4.10 以PDMS微孔陣列使真皮乳頭細胞在支架上形成陣列 36
4.11真皮乳頭組織在活體內誘導毛囊生成之能力37
第五章 結論 38
第六章 參考文獻 39
圖附錄 45
表附錄 67
dc.language.isozh-TW
dc.subject毛囊重建zh_TW
dc.subject真皮乳頭細胞zh_TW
dc.subject聚二甲基矽氧烷zh_TW
dc.subject微孔陣列zh_TW
dc.subject去細胞化zh_TW
dc.subjectDermal papillaen
dc.subjectmicrowell arrayen
dc.subjectHair follicle regenerationen
dc.subjectDecellularizationen
dc.subjectPDMSen
dc.title以PDMS薄膜及微孔洞始去細胞之真皮支架上形成真皮乳頭微球陣列應用在毛囊重建工程之研究zh_TW
dc.titleFormation of dermal papilla spheroid array on decellurized dermis scaffold by PDMS film and microwell for hair follicle regeneration engineeringen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃意真,許馨云
dc.subject.keyword真皮乳頭細胞,聚二甲基矽氧烷,微孔陣列,去細胞化,毛囊重建,zh_TW
dc.subject.keywordDermal papilla,PDMS,microwell array,Decellularization,Hair follicle regeneration,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201602545
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved