請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49713完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢宗良(Chung-Liang Chien) | |
| dc.contributor.author | Meng-Lin Liao | en |
| dc.contributor.author | 廖孟琳 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:43:37Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-15 | |
| dc.identifier.citation | Allwardt BA, Dowling JE. 2001. The pineal gland in wild-type and two zebrafish mutants with retinal defects. J Neurocytol 30(6):493-501.
Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. 2011. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188(4):799-808. Asch WS, Leake D, Canger AK, Passini MA, Argenton F, Schechter N. 1998. Cloning of zebrafish neurofilament cDNAs for plasticin and gefiltin: increased mRNA expression in ganglion cells after optic nerve injury. J Neurochem 71(1):20-32. Athlan ES, Sacher MG, Mushynski WE. 1997. Associations between intermediate filament proteins expressed in cultured dorsal root ganglion neurons. J Neurosci Res 47(3):300-310. Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M. 2009. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330(2):406-426. Beaulieu JM, Robertson J, Julien JP. 1999. Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 77(1):41-45. Bilotta J, Saszik S. 2001. The zebrafish as a model visual system. Int J Dev Neurosci 19(7):621-629. Branchek T, Bremiller R. 1984. The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J Comp Neurol 224(1):107-115. Canger AK, Passini MA, Asch WS, Leake D, Zafonte BT, Glasgow E, Schechter N. 1998. Restricted expression of the neuronal intermediate filament protein plasticin during zebrafish development. J Comp Neurol 399(4):561-572. Chien CL, Lee TH, Lu KS. 1998. Distribution of neuronal intermediate filament proteins in the developing mouse olfactory system. J Neurosci Res 54(3):353-363. Chien CL, Liem RK. 1995. The neuronal intermediate filament, alpha-internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp Eye Res 61(6):749-756. Chien CL, Liu TC, Ho CL, Lu KS. 2005. Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res 80(5):693-706. Chien CL, Mason CA, Liem RK. 1996. α-Internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. J Neurobiol 29(3):304-318. Ching GY, Chien CL, Flores R, Liem RK. 1999. Overexpression of alpha-internexin causes abnormal neurofilamentous accumulations and motor coordination deficits in transgenic mice. J Neurosci 19(8):2974-2986. Ching GY, Liem RK. 1993. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 122(6):1323-1335. Ching GY, Liem RK. 1998. Roles of head and tail domains in alpha-internexin’s self-assembly and coassembly with the neurofilament triplet proteins. J Cell Sci 111 ( Pt 3):321-333. Chiu FC, Barnes EA, Das K, Haley J, Socolow P, Macaluso FP, Fant J. 1989. Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron 2(5):1435-1445. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757-761. Cui C, Stambrook PJ, Parysek LM. 1995. Peripherin assembles into homopolymers in SW13 cells. J Cell Sci 108 ( Pt 10):3279-3284. Detrich HW, 3rd, Westerfield M, Zon LI. 1999. Overview of the zebrafish system. Methods Cell Biol 59:3-10. Ekstrom P, Meissl H. 2003. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 358(1438):1679-1700. Ekstrzm P, Meissl H. 1997. The pineal organ of teleost fishes. Rev Fish Biol Fish 7(2):199-284. Falcon J. 1999. Cellular circadian clocks in the pineal. Prog Neurobiol 58(2):121-162. Fejer Z, Rohlich P, Szel A, David C, Zadori A, Manzano MJ, Vigh B. 2001. Comparative ultrastructure and cytochemistry of the avian pineal organ. Microsc Res Tech 53(1):12-24. Fleisch VC, Neuhauss SC. 2006. Visual behavior in zebrafish. Zebrafish 3(2):191-201. Fliegner KH, Ching GY, Liem RK. 1990. The predicted amino acid sequence of alpha-internexin is that of a novel neuronal intermediate filament protein. EMBO J 9(3):749-755. Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK. 1994. Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342(2):161-173. Giasson BI, Mushynski WE. 1997. Developmentally regulated stabilization of neuronal intermediate filaments in rat cerebral cortex. Neurosci Lett 229(2):77-80. Glasgow E, Druger RK, Fuchs C, Lane WS, Schechter N. 1994. Molecular cloning of gefiltin (ON1): serial expression of two new neurofilament mRNAs during optic nerve regeneration. EMBO J 13(2):297-305. Gutierrez C, McNally M, Canto-Soler MV. 2011. Cytoskeleton proteins previously considered exclusive to ganglion cells are transiently expressed by all retinal neuronal precursors. BMC Dev Biol 11:46. Herrmann H, Aebi U. 2004. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749-789. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498-503. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699-700. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-821. Jing-Ping Z, Tian QB, Sakagami H, Kondo H, Endo S, Suzuki T. 2005. p55 protein is a member of PSD scaffold proteins in the rat brain and interacts with various PSD proteins. Brain Res Mol Brain Res 135(1-2):204-216. Kaplan MP, Chin SS, Fliegner KH, Liem RK. 1990. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10(8):2735-2748. Kim S, Coulombe PA. 2007. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21(13):1581-1597. Kimmel CB. 1993. Patterning the brain of the zebrafish embryo. Annu Rev Neurosci 16:707-732. Ko TL, Chien CL, Lu KS. 2005. The expression of alpha-internexin and peripherin in the developing mouse pineal gland. J Biomed Sci 12(5):777-789. Lagman D, Callado-Perez A, Franzen IE, Larhammar D, Abalo XM. 2015. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation. PLoS One 10(3):e0121330. Lariviere RC, Julien JP. 2004. Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58(1):131-148. Leake D, Asch WS, Canger AK, Schechter N. 1999. Gefiltin in zebrafish embryos: sequential gene expression of two neurofilament proteins in retinal ganglion cells. Differentiation 65(4):181-189. Lee MK, Xu Z, Wong PC, Cleveland DW. 1993. Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122(6):1337-1350. Liao ML, Peng WH, Kan D, Chien CL. 2016. Developmental Pattern of the Neuronal Intermediate Filament inaa in the Zebrafish Retina. J Comp Neurol. Liu CH, Chien CL. 2013. Molecular cloning and characterization of chicken neuronal intermediate filament protein alpha-internexin. J Comp Neurol 521(9):2147-2164. Liu CH, Wang IJ, Wei FD, Chien CL. 2013. Neuronal intermediate filament alpha-internexin is expressed by neuronal lineages in the developing chicken retina. Exp Eye Res 110:18-25. Mano H, Fukada Y. 2007. A median third eye: pineal gland retraces evolution of vertebrate photoreceptive organs. Photochem Photobiol 83(1):11-18. Margiotta A, Bucci C. 2016. Role of Intermediate Filaments in Vesicular Traffic. Cells 5(2). Millecamps S, Gowing G, Corti O, Mallet J, Julien JP. 2007. Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J Neurosci 27(18):4947-4956. Moller M, Baeres FM. 2002. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309(1):139-150. Morbitzer R, Romer P, Boch J, Lahaye T. 2010. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107(50):21617-21622. Nasevicius A, Ekker SC. 2000. Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26(2):216-220. Nevin LM, Robles E, Baier H, Scott EK. 2010. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 8:126. Niloff MS, Dunn RJ, Levine RL. 1998. The levels of retinal mRNA for gefiltin, a neuronal intermediate filament protein, are regulated by the tectum during optic fiber regeneration in the goldfish. Brain Res Mol Brain Res 61(1-2):78-89. Oshima RG. 2007. Intermediate filaments: a historical perspective. Exp Cell Res 313(10):1981-1994. Pachter JS, Liem RK. 1985. alpha-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J Cell Biol 101(4):1316-1322. Perrot R, Berges R, Bocquet A, Eyer J. 2008. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27-65. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. 2007. p53 activation by knockdown technologies. PLoS Genet 3(5):e78. Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Mitani Y, Maruyama K, Tanaka T. 2016. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension. Front Pharmacol 7:142. Schilling TF, Webb J. 2007. Considering the zebrafish in a comparative context. J Exp Zool B Mol Dev Evol 308(5):515-522. Schmitt EA, Dowling JE. 1999. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404(4):515-536. Schwartz ML, Shneidman PS, Bruce J, Schlaepfer WW. 1990. Axonal dependency of the postnatal upregulation in neurofilament expression. J Neurosci Res 27(2):193-201. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC. 2007. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313(10):2098-2109. Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD. 1999. A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J Biol Chem 274(14):9881-9890. Streisinger G, Walker C, Dower N, Knauber D, Singer F. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813):293-296. Tajika M, Yamamoto K, Mekada A, Kani K, Okabe H. 2004. Neuronal intermediate filament in the developing rat retina. Acta Histochem Cytochem 37(2):95-99. Thyagarajan A, Strong MJ, Szaro BG. 2007. Post-transcriptional control of neurofilaments in development and disease. Exp Cell Res 313(10):2088-2097. Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. 2005. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15(11):608-617. Van Ryswyk L, Simonson L, Eisen JS. 2014. The role of inab in axon morphology of an identified zebrafish motoneuron. PLoS One 9(2):e88631. Vigh B, Rohlich P, Gorcs T, Manzano e Silva MJ, Szel A, Fejer Z, Vigh-Teichmann I. 1998. The pineal organ as a folded retina: immunocytochemical localization of opsins. Biol Cell 90(9):653-659. Walker KL, Yoo HK, Undamatla J, Szaro BG. 2001. Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21(24):9655-9666. Xiao T, Roeser T, Staub W, Baier H. 2005. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development (Cambridge, England) 132(13):2955-2967. Yuan A, Rao MV, Kumar A, Julien JP, Nixon RA. 2003. Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci 23(28):9452-9458. Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA. 2006. Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26(39):10006-10019. Zhao Y, Szaro BG. 1997a. Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. J Comp Neurol 377(3):351-364. Zhao Y, Szaro BG. 1997b. Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. J Neurobiol 33(6):811-824. Zimmerman BL, Tso MO. 1975. Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J Cell Biol 66(1):60-75. Zou J, Wang X, Wei X. 2012. Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev Cell 22(6):1261-1274. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49713 | - |
| dc.description.abstract | α-Internexin is one of the neuronal intermediate filament (nIF) proteins, which also include peripherin and neurofilament (NF) triplet proteins. Previous studies found that expression of α-internexin precedes the NF triplet proteins in mammals and suggested that α-internexin may play a key role in neuronal cytoskeleton network during development. α-Internexin is able to form homopolymers, while NF triplet proteins are obligate heteropolymers in neurons. Therefore, α-internexin and NF triplet proteins are suggested to play different spatial and temporal roles in neuronal development.
The zebrafish (Danio rerio) is a vertebrate animal model and an ideal model for the study of developmental neuroscience. One homolog of mammalian α-internexin, gefiltin (or inab), has been characterized for its expression in the early development of zebrafish. Still, little is known about the other α-internexin homolog, zebrafish inaa, as well as the distribution of both inaa and inab in developing zebrafish. In this study, we aim to analyze the expression pattern of inaa during zebrafish development and then to compare expression patterns of both inaa and inab proteins during zebrafish development. We demonstrated that zebrafish inaa is an α-internexin homolog and shares the similar characteristics of nIFs. We generated specific anti-zebrafish inaa and inab antibodies to detect inaa and inab proteins, respectively. Immunohistochemical analysis of zebrafish revealed that both inaa and inab proteins were found in telencephalon, optic tectum and cerebellum during development. Moreover, inaa could act distinctively as the scaffold of zebrafish cone photoreceptors during retinal development, whereas inab was obviously located in the ganglion cell layer (GCL), optic fiber layer (OFL) and optic nerve. Besides, inaa was also expressed in the double cone-like photoreceptors of pineal gland where inab was sparsely found. Therefore, we suggest that inaa may be a useful marker for studies of zebrafish cone photoreceptor not only in the retina but also in the pineal gland. In conclusion, we illustrated the distribution of both inaa and inab proteins is conserved in telencephalon, optic tectum and cerebellum phylogenetically, but inaa and inab proteins have distinct expression patterns in zebrafish pineal gland and retina. The distribution of inaa and inab may support the investigation of their functional roles in various neuronal development of zebrafish. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:43:37Z (GMT). No. of bitstreams: 1 ntu-105-D99446003-1.pdf: 15076598 bytes, checksum: efc7a24597fac9e3ec6093790bc145b4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Signature of Committees ------------------------------- i
Acknowledgement ---------------------------------------ii Abbreviation of Figures ------------------------------- v Summary of Dissertation in Chinese -------------------- 1 Summary of Dissertation in English -------------------- 3 Chapter I. General Introduction 5 Introduction of Intermediate Filaments -----------------6 Neuronal Intermediate Filament Proteins-----------------7 α-Internexin -------------------------------------------7 The Zebrafish Model ------------------------------------9 Specific Aims of Current Study ------------------------10 Chapter II. Developmental Pattern of the Neuronal Intermediate Filament inaa in the Zebrafish Retina 11 Abstract ----------------------------------------------12 Introduction ------------------------------------------13 Materials and Methods ---------------------------------17 Results -----------------------------------------------24 Discussion --------------------------------------------30 Figure legends, Figures and Tables --------------------35 Chapter III. Distribution patterns of zebrafish neuronal intermediate filaments, inaa and inab 59 Abstract ----------------------------------------------60 Introduction ------------------------------------------61 Materials and Methods ---------------------------------64 Results -----------------------------------------------68 Discussion --------------------------------------------73 Figure legends, Figures and Tables --------------------77 Chapter IV. Conclusions and Future Perspectives 93 Conclusions -------------------------------------------94 Future Perspective 1 ----------------------------------94 Future Perspective 2 ----------------------------------95 Figure legend and Figure ------------------------------99 Bibliography -----------------------------------------101 Appendix ---------------------------------------------111 | |
| dc.language.iso | en | |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 視網膜 | zh_TW |
| dc.subject | α-Internexin | zh_TW |
| dc.subject | 松果體 | zh_TW |
| dc.subject | 發育 | zh_TW |
| dc.subject | development | en |
| dc.subject | zebrafish | en |
| dc.subject | retina | en |
| dc.subject | pineal gland | en |
| dc.subject | α-Internexin | en |
| dc.title | 神經元中間絲蛋白inaa及inab在斑馬魚神經系統的表現分析 | zh_TW |
| dc.title | Characterization of Neuronal Intermediate Filament Protein inaa and inab in the Nervous System of Zebrafish | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王一中,李士傑,呂俊宏,葉龍坤 | |
| dc.subject.keyword | α-Internexin,斑馬魚,視網膜,松果體,發育, | zh_TW |
| dc.subject.keyword | α-Internexin,zebrafish,retina,pineal gland,development, | en |
| dc.relation.page | 128 | |
| dc.identifier.doi | 10.6342/NTU201602468 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 14.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
