Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49682
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shan Chen)
dc.contributor.authorWei-Lin Loen
dc.contributor.author羅威麟zh_TW
dc.date.accessioned2021-06-15T11:41:44Z-
dc.date.available2016-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citation[1] O.I. Imole, M. Wojtkowski, V. Magnanimo, S. Luding, Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Phys Rev E Stat Nonlin Soft Matter Phys 89 (2014) 042210.
[2] M. Lätzel, S. Luding, J.H. Herrmann, Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter 2 (2000) 123-135.
[3] X. Li, H.S. Yu, X.S. Li, Macro–micro relations in granular mechanics. International Journal of Solids and Structures 46 (2009) 4331-4341.
[4] V.L. Popov, Method of reduction of dimensionality in contact and friction mechanics: A linkage between micro and macro scales. Friction 1 (2013) 41-62.
[5] C.-D. Jan, H.W. Shen, Review dynamic modeling of debris flows, in: A. Armanini, M. Michiue (Eds.), Recent Developments on Debris Flows, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 93-116.
[6] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows. Nature 441 (2006) 727-730.
[7] F. da Cruz, S. Emam, M. Prochnow, J.N. Roux, F. Chevoir, Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E Stat Nonlin Soft Matter Phys 72 (2005) 021309.
[8] Y. Forterre, O. Pouliquen, Flows of Dense Granular Media. Annual Review of Fluid Mechanics 40 (2008) 1-24.
[9] O. Pouliquen, Y. Forterre, Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane. Journal of Fluid Mechanics 453 (2002) 133-151.
[10] P. Jop, Y. Forterre, O. Pouliquen, Crucial role of sidewalls in granular surface flows: Consequences for the rheology. Journal of Fluid Mechanics 541 (2005) 167-192.
[11] I.S. Aranson, L.S. Tsimring, F. Malloggi, E. Clément, Nonlocal rheological properties of granular flows near a jamming limit. Physical Review E 78 (2008) 031303.
[12] O. Kuwano, R. Ando, T. Hatano, Crossover from negative to positive shear rate dependence in granular friction. Geophysical Research Letters 40 (2013) 1295-1299.
[13] G.D.R. MiDi, On dense granular flows. Eur Phys J E Soft Matter 14 (2004) 341-365.
[14] T. Hatano, M. Otsuki, S.I. Sasa, Criticality and scaling relations in a sheared granular material. J. Phys. Soc. Jpn. 76 (2007).
[15] H. Takahiro, Constitutive law of dense granular matter. Journal of Physics: Conference Series 258 (2010) 012006.
[16] H. Henein, J.K. Brimacombe, A.P. Watkinson, Experimental study of transverse bed motion in rotary kilns. MTB 14 (1983) 191-205.
[17] J. Mellmann, The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology 118 (2001) 251-270.
[18] D.V. Khakhar, J.J. McCarthy, T. Shinbrot, J.M. Ottino, Transverse flow and mixing of granular materials in a rotating cylinder. Physics of Fluids 9 (1997) 31-43.
[19] G. Felix, V. Falk, U. D'Ortona, Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow. Eur Phys J E Soft Matter 22 (2007) 25-31.
[20] A.V. Orpe, D.V. Khakhar, Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Phys Rev E Stat Nonlin Soft Matter Phys 64 (2001) 031302.
[21] K. Yamane, M. Nakagawa, S.A. Altobelli, T. Tanaka, Y. Tsuji, Steady particulate flows in a horizontal rotating cylinder. Physics of Fluids 10 (1998) 1419-1427.
[22] C.M. Dury, G.H. Ristow, Radial segregation in a two-dimensional rotating drum. Journal de Physique II 7 (1997) 737-745.
[23] T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Closure relations for shallow granular flows from particle simulations. Granular Matter 14 (2012) 531-552.
[24] N. Jain, J.M. Ottino, R.M. Lueptow, An experimental study of the flowing granular layer in a rotating tumbler. Physics of Fluids 14 (2002) 572.
[25] J.M. Ottino, D.V. Khakhar, Scaling of granular flow processes: From surface flows to design rules. AIChE J. 48 (2002) 2157-2166.
[26] N.A. Pohlman, B.L. Severson, J.M. Ottino, R.M. Lueptow, Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation. Phys Rev E Stat Nonlin Soft Matter Phys 73 (2006) 031304.
[27] S. Luding, Cohesive, frictional powders: Contact models for tension. Granular Matter 10 (2008) 235-246.
[28] Y. Guo, J.K. Morgan, Influence of normal stress and grain shape on granular friction: Results of discrete element simulations. J. Geophys. Res. B Solid Earth 109 (2004) 1-16.
[29] Z.X. Yang, J. Yang, L.Z. Wang, On the influence of inter-particle friction and dilatancy in granular materials: A numerical analysis. Granular Matter 14 (2012) 433-447.
[30] B.N. Asmar, P.A. Langston, A.J. Matchett, J.K. Walters, Validation tests on a distinct element model of vibrating cohesive particle systems. Comput. Chem. Eng. 26 (2002) 785-802.
[31] R.Y. Yang, A.B. Yu, L. McElroy, J. Bao, Numerical simulation of particle dynamics in different flow regimes in a rotating drum, 9th International Conference on Bulk Materials Storage, Handling and Transportation, ICBMH 2007, Newcastle, NSW, 2007.
[32] U. El Shamy, C. Denissen, Microscale Energy Dissipation Mechanisms in Cyclically-Loaded Granular Soils. Geotechnical and Geological Engineering 30 (2011) 343-361.
[33] F.L. Yang, W.T. Chang, Y.T. Huang, S.H. Hsieh, C.S. Chen, Dry granular avalanche down a flume: Choice of discrete element simulation parameters. Physics of Fluids 25 (2013) 123303.
[34] R.D. Mindlin, H. Deresiewica, Elastic spheres in contact under varying oblique forces. Journal of applied mechanics 20.
[35] E. Dintwa, M. Van Zeebroeck, E. Tijskens, H. Ramon, Determination of Parameters of a Tangential Contact Force Model for Viscoelastic Spheroids (fruits) using a Rheometer Device. Biosystems Engineering 91 (2005) 321-327.
[36] H. Kruggel-Emden, S. Wirtz, V. Scherer, An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model. Chemical Engineering Science 62 (2007) 6914-6926.
[37] H. Kruggel-Emden, S. Wirtz, V. Scherer, A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chemical Engineering Science 63 (2008) 1523-1541.
[38] P.A. Cundall, O.D.L. Strack, DISCRETE NUMERICAL MODEL FOR GRANULAR ASSEMBLIES. Geotechnique 29 (1979) 47-65.
[39] T. Hatano, Power-law friction in closely packed granular materials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75 (2007).
[40] I.F. Collins, P.A. Kelly, A thermomechanical analysis of a family of soil models. Geotechnique 52 (2002) 507-518.
[41] I.F. Collins, B. Muhunthan, On the relationship between stress-dilatancy, anisotropy, and plastic dissipation for granular materials. Geotechnique 53 (2003) 611-618.
[42] B.N. Asmar, P.A. Langston, J.K. Walters, A.J. Matchett, T. Yanagida, Distinct Element Model of Energy Dissipation in Vibrated Binary Particulate Mixtures. Particulate Science and Technology 24 (2006) 395-409.
[43] U. El Shamy, C. Denissen, Microscale characterization of energy dissipation mechanisms in liquefiable granular soils. Computers and Geotechnics 37 (2010) 846-857.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49682-
dc.description.abstract微觀顆粒的互動行為與巨觀顆粒流的物理現象之間的關係一直是重要的研究議題。近年來,由於數值模擬愈趨成熟,許多過去單憑實驗很難觀察到的微觀顆粒行為,例如:顆粒之間的接觸力與相對速度,都可以透過數值模擬得到合理的結果,進而建立和實驗觀察到的巨觀現象之間的關係。在顆粒流的研究中,離散元素法(discrete element method, DEM)是受到許多學者採用的數值模擬方法,以其能夠進行大量且快速的模擬並得到和實驗相符的結果。
慣性數I是一個能夠捕捉顆粒流特徵的無因次參數,根據I值的大小,可以得知顆粒流的行為比較接近固體還是流體。近年來有學者拿I和有效摩擦係數μ之間的關係來推導顆粒流的組成律,使得I和μ成為研究顆粒流非常重要的巨觀參數。透過DEM的模擬,有學者指出顆粒流的巨觀有效摩擦係數μ與微觀摩擦係數f的關係不大。然而,亦有學者發現當f≤0.4,μ值隨著f呈線性成長。為了釐清f和μ之間的關係,本研究透過DEM進行剪力槽(shear cell)實驗的模擬,發現在相近的慣性數I之下,剪力槽內顆粒流的μ隨著f的增加而增加。這是因為在剪力槽內,f對壁體承受的正向力的影響相對不大。同時,f的增加會提高發生庫倫滑動的門檻,讓顆粒和顆粒以及顆粒和壁體之間產生較大的切向力,造成μ值的上升。此外,本研究發現由於和邊界接觸的顆粒會發生「鐘擺效應」機制,顆粒流和邊界之間的接觸切向力方向不會一致,造成穩態顆粒流的μ明顯低於f。另一方面,當剪力槽的轉速夠快,暫態顆粒流和邊界的切向接觸力有機會完全進入庫倫摩擦。此時所有和邊界接觸的顆粒受到方向一致的摩擦力作用,本研究稱之為「完全同步」狀態。「完全同步」下的顆粒流的μ值幾乎和f一樣。
微觀摩擦係數f和旋轉鼓內速度剖面曲線的關係也是本研究探討的議題。當旋轉鼓內的顆粒流達到穩態,該顆粒系統會因為具有較高的f而形成較大的動態安息角β,具有較高的位能。然而,旋轉鼓內速度剖面曲線並沒有因為顆粒系統的f不同而有顯著的變化,暗示具有不同f的穩態顆粒系統之間動能的差異遠不及彼此位能的差異,也代表微觀摩擦係數f會影響顆粒系統內部顆粒所作的功。本研究透過「功能原理」的應用以及使用DEM進行微觀能量的計算,發現不同f的顆粒系統從靜止到「動能初峰期」這段時間系統內接觸力所做的功Π*會決定顆粒系統在穩態期間的位能。換句話說,不同f的穩態顆粒系統彼此之間的位能差異,主要來自於彼此Π*的差值。本研究進一步分析每種接觸力所作的功隨著f的變化,發現從靜止到「動能初峰期」這段時間內具有較大f的顆粒系統並沒有消散比較多的能量,而是透過切向彈簧力獲得較多的能量。
zh_TW
dc.description.abstractThe relation between the interactions of microscopic particles and phenomena of macroscopic granular flow have attracted great interests recently. As the numerical simulation techniques improve, many quantities of microscopic particles that are difficult to be observed or measured by experiments can be ready to computed. For example, the contact forces and relative velocities between particles can be calculated by simulation schemes. Thus, the relations between microscopic behaviors and macroscopic phenomena can be found. For granular flows, one of the most popular numerical simulation schemes is the discrete element method (DEM), because it can process large-scale particle simulations and produce numerical results in a good agreement with experimental measurements.
The inertial number, I, is a non-dimensional parameter to quantify the flowing regime of granular flows. Recently, constitutive laws of granular flows have been derived by using the relations between I and the macroscopic effective friction coefficient, μ. Through DEM simulation, some studies suggested that the macroscopic effective friction coefficient was independent of the microscopic friction coefficient, f. However, there were studies claimed that μ was linearly dependent on f when f≤0.4. In order to improve the understanding of the relation between μ and f, shear cell simulations are performed in this research. The macroscopic effective friction coefficients of the granular flows in the shear cell are found to monotonically grow with microscopic friction coefficients under similar values of I, because the influence of f on normal forces is much less than tangential forces on the cell wall. At the same time, the increasing f raises the criterion of Coulomb friction and allows larger tangential forces between particles and cell wall, thus resulting in the increasing of μ. Besides, because the pendulum effect occurs on the particles on the cell wall, the directions of tangential forces between particles and cell wall are not identical, thus resulting in the values of μ from steady state granular flows much less than f. On the other hand, when the rotating speeds of the shear cell are fast enough, all tangential forces between the particles and cell wall of transient granular flows reach the criterion of Coulomb friction. At this moment, all particles on the cell are driven by the friction forces with the same direction, named complete synchronization herein. The granular flows under the complete synchronization state have the same values of μ and f.
The relation between the microscopic friction coefficients and velocity profiles of particle systems in rotating drums is the other research issue in this thesis. When the particle systems, half-filled the drum, reach a steady state, the ones with higher f will form higher dynamic repose angles, thus resulting in higher potential energies. However, the velocity profiles of the particle systems in the rotating drum are not obviously influenced by f. These similar velocity profiles suggest that the particle systems with different f have similar kinetic energy. Although the particle systems with higher f have higher potential energies, the kinetic energies are almost identical, which indicates f has significant effects on the work of internal forces between particles.
In this research, through the application of principle of work and energy and the calculation of microscopic energy using the DEM simulation, the potential energies of steady state particle systems with different f are found determined by the work, Π*, done by contact forces during the first kinetic peak period. In other words, the difference of potential energies of particle systems with different f comes from the difference of their Π*. Furthermore, to analyze the components of Π* with different f, the particle systems with higher f are found not dissipating more energy, but obtaining more energy from tangential contact force.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:41:44Z (GMT). No. of bitstreams: 1
ntu-105-D96521001-1.pdf: 4441781 bytes, checksum: c2471f809cd5be2358b8c95851eb6396 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 ………………………………………………………………………………… i
摘要 ………………………………………………………………………………… iii
Abstract …………………………………………………………………………… v
目錄 ………………………………………………………………………………… viii
圖目錄 ……………………………………………………………………………… x
表目錄 ……………………………………………………………………………… xv
第一章 緒論 ……………………………………………………………………… 1
第二章 接觸模型 ………………………………………………………………… 6
2-1 接觸模型概述 ……………………………………………………… 6
2-2 接觸模型參數 ……………………………………………………… 8
第三章 微觀摩擦係數對巨觀有效摩擦係數的影響 …………………………… 12
3-1 鐘擺效應 …………………………………………………………… 12
3-2 剪力槽的環境設定與巨觀顆粒流況 ……………………………… 15
3-3 微觀摩擦係數影響巨觀摩擦係數的機制 ………………………… 22
3-4 不同轉速下的行為 ………………………………………………… 29
第四章 顆粒流的能量計算 ……………………………………………………… 44
4-1 Particle Base ………………………………………………………… 44
4-2 Pair Base …………………………………………………………… 46
4-3 案例驗證 …………………………………………………………… 49
第五章 微觀摩擦係數對旋轉鼓內速度剖面曲線的影響 ……………………… 54
5-1 顆粒系統的巨觀行為 ……………………………………………… 54
5-2 顆粒系統的能量變化 ……………………………………………… 62
第六章 結論 ……………………………………………………………………… 74
參考文獻 ………………………………………………………………………… 77
附錄A 分配律的捨位誤差 ……………………………………………………… 82
dc.language.isozh-TW
dc.subject剪力槽zh_TW
dc.subject能量分析zh_TW
dc.subject顆粒流zh_TW
dc.subject旋轉鼓zh_TW
dc.subject離散元素法zh_TW
dc.subject摩擦係數zh_TW
dc.subject速度剖面曲線zh_TW
dc.subjectgranular energyen
dc.subjectdiscrete element methoden
dc.subjectrotating drumen
dc.subjectshear cellen
dc.subjectvelocity profileen
dc.subjectfriction coefficienten
dc.subjectgranular flowen
dc.title以離散元素模擬探討摩擦係數對顆粒流動行為之影響zh_TW
dc.titleStudy of Effects of Friction Coefficients to Granular Flow Dynamics by Discrete Element Simulationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor蔡丁貴
dc.contributor.oralexamcommittee謝尚賢,楊馥菱,蕭述三,王仲宇
dc.subject.keyword顆粒流,摩擦係數,速度剖面曲線,能量分析,剪力槽,旋轉鼓,離散元素法,zh_TW
dc.subject.keywordgranular flow,friction coefficient,velocity profile,granular energy,shear cell,rotating drum,discrete element method,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201601668
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved