Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉(Ching-Yu Lin)
dc.contributor.authorChi-Hung Chenen
dc.contributor.author陳祈宏zh_TW
dc.date.accessioned2021-06-15T11:40:36Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationAl-Bander, H. A., Mock, D. M., Etheredge, S. B., Paukert, T. T., Humphreys, M. H., and Morris, R. C., Jr. (1986). Coordinately increased lysozymuria and lysosomal enzymuria induced by maleic acid. Kidney Int, 30(6), 804-812.
Bank, N., Aynedjian, H. S., and Mutz, B. F. (1986). Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis. Am J Physiol, 250(3 Pt 2), F476-482.
Berry, C. A., and Rector, F. C., Jr. (1991). Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney. Semin Nephrol, 11(2), 86-97.
Boros, L. G., Brackett, D. J., and Harrigan, G. G. (2003). Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr Cancer Drug Targets, 3(6), 445-453.
Bosgelmez, II, Soylemezoglu, T., and Guvendik, G. (2008). The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res, 125(1), 46-58. doi: 10.1007/s12011-008-8154-3
Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., . . . Wishart, D. S. (2013). The Human Urine Metabolome. PLoS One, 8(9), e73076. doi: 10.1371/journal.pone.0073076
Bunton, C. A., Fuller, N. A., Perry, S. G., and Shiner, V. J. (1963). 542. The hydrolysis of carboxylic anhydrides. Part III. Reactions in initially neutral solution. Journal of the Chemical Society (Resumed)(0), 2918-2926. doi: 10.1039/JR9630002918
Castano, E., Marzabal, P., Casado, F. J., Felipe, A., and Pastor-Anglada, M. (1997). Na+,K(+)-ATPase expression in maleic-acid-induced Fanconi syndrome in rats. Clin Sci (Lond), 92(3), 247-253.
Chemical, D. (1984). Supplemental study of maleic anhydride incorporated in the diet
of male rats for 183 days. USEPA.
Chen, H. C., Wu, C., and Wu, K. Y. (2015). Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction. Talanta, 136, 9-14. doi: 10.1016/j.talanta.2014.11.021
De Luca, G., Calpona, P. R., Caponetti, A., Romano, G., Di Benedetto, A., Cucinotta, D., and Di Giorgio, R. M. (2001). Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism, 50(1), 60-64. doi: 10.1053/meta.2001.19432
Delaney, J., Neville, W. A., Swain, A., Miles, A., Leonard, M. S., and Waterfield, C. J. (2004). Phenylacetylglycine, a putative biomarker of phospholipidosis: its origins and relevance to phospholipid accumulation using amiodarone treated rats as a model. Biomarkers, 9(3), 271-290. doi: 10.1080/13547500400018570
Diez-Fernandez, C., Gallego, J., Haberle, J., Cervera, J., and Rubio, V. (2015). The Study of Carbamoyl Phosphate Synthetase 1 Deficiency Sheds Light on the Mechanism for Switching On/Off the Urea Cycle. J Genet Genomics, 42(5), 249-260. doi: 10.1016/j.jgg.2015.03.009
Doessegger, L., Schmitt, G., Lenz, B., Fischer, H., Schlotterbeck, G., Atzpodien, E. A., . . . Singer, T. (2013). Increased levels of urinary phenylacetylglycine associated with mitochondrial toxicity in a model of drug-induced phospholipidosis. Ther Adv Drug Saf, 4(3), 101-114. doi: 10.1177/2042098613479393
Dow, J. L., and Green, T. (2000). Trichloroethylene induced vitamin B(12) and folate deficiency leads to increased formic acid excretion in the rat. Toxicology, 146(2-3), 123-136.
Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P., and Sassone-Corsi, P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A, 109(14), 5541-5546. doi: 10.1073/pnas.1118726109
Everett, R. M., Descotes, G., Rollin, M., Greener, Y., Bradford, J. C., Benziger, D. P., and Ward, S. J. (1993). Nephrotoxicity of pravadoline maleate (WIN 48098-6) in dogs: evidence of maleic acid-induced acute tubular necrosis. Fundam Appl Toxicol, 21(1), 59-65.
Fiehn, O. (2002). Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol, 48(1-2), 155-171.
Genter, M. B. (2007). Final report on the safety assessment of Maleic Acid. Int J Toxicol, 26 Suppl 2, 125-130. doi: 10.1080/10915810701351251
Green, T., Dow, J., Ong, C. N., Ng, V., Ong, H. Y., Zhuang, Z. X., . . . Bloemen, L. (2004). Biological monitoring of kidney function among workers occupationally exposed to trichloroethylene. Occup Environ Med, 61(4), 312-317.
Griffin, J. L., and Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nat Rev Cancer, 4(7), 551-561. doi: 10.1038/nrc1390
He, J. F., Yang, W. Y., Yao, F. J., Zhao, H., Li, X. J., and Yuan, Z. B. (2011). Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis. J Chromatogr A, 1218(24), 3816-3821. doi: 10.1016/j.chroma.2011.04.047
Holmes, E., and Antti, H. (2002). Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst, 127(12), 1549-1557.
Hu, G. J., Li, D. G., Li, S. F., Li, Z. B., and Li, J. X. (2004). [An animal model of alcoholic fatty liver and the prevention and treatment with New Qinggan Decoction]. Journal of Chinese Integrative Medicine, 2(2), 123-125, 137.
Hwang, G. S., Yang, J. Y., Ryu do, H., and Kwon, T. H. (2010). Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol, 298(2), F461-470. doi: 10.1152/ajprenal.00389.2009
Inkielewicz-Stepniak, I. (2011). Impact of fluoxetine on liver damage in rats. Pharmacol Rep, 63(2), 441-447.
Ishihara, K., Katsutani, N., and Aoki, T. (2006). A metabonomics study of the hepatotoxicants galactosamine, methylene dianiline and clofibrate in rats. Basic Clin Pharmacol Toxicol, 99(3), 251-260. doi: 10.1111/j.1742-7843.2006.pto_455.x
Kaplan. (2011). USMLE STEP 1 BIOCHEMISTRY AND MEDICAL GENETICS LECTURE NOTES.
Kim, J. E., Lee, Y. J., Kwak, M. H., Jun, G., Koh, E. K., Song, S. H., . . . Hwang, D. Y. (2014). Metabolomics approach to serum biomarker for loperamide-induced constipation in SD rats. Lab Anim Res, 30(1), 35-43. doi: 10.5625/lar.2014.30.1.35
Liang, Q., Ni, C., Xie, M., Zhang, Q., Zhang, Y. X., Yan, X. Z., . . . Zhang, Y. Z. (2009). Nephrotoxicity study of Aristolochia fangchi in rats by metabonomics. Journal of Chinese Integrative Medicine 7(8), 746-752. doi: 10.3736/jcim20090808
Lin, C. Y., Wu, H., Tjeerdema, R. S., and Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3(1), 55-67. doi: 10.1007/s11306-006-0043-1
Lin, S., Yang, J., Wu, G., Liu, M., Luan, X., Lv, Q., . . . Hu, J. (2010). Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci, 17 Suppl 1, S46. doi: 10.1186/1423-0127-17-s1-s46
Lohbeck, K., Haferkorn, H., Fuhrmann, W., and Fedtke, N. (2000). Maleic and Fumaric Acids Ullmann's Encyclopedia of Industrial Chemistry: Wiley-VCH Verlag GmbH & Co. KGaA.
Lutz, N. W., Viola, A., Malikova, I., Confort-Gouny, S., Audoin, B., Ranjeva, J. P., . . . Cozzone, P. J. (2007). Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One, 2(7), e595. doi: 10.1371/journal.pone.0000595
Mahadevan, S., Shah, S. L., Marrie, T. J., and Slupsky, C. M. (2008). Analysis of metabolomic data using support vector machines. Anal Chem, 80(19), 7562-7570. doi: 10.1021/ac800954c
Mitsuhashi, T., Morris, R. C., Jr., and Ives, H. E. (1991). 1,25-dihydroxyvitamin D3 modulates growth of vascular smooth muscle cells. J Clin Invest, 87(6), 1889-1895. doi: 10.1172/jci115213
Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999). 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181-1189. doi: 10.1080/004982599238047
Pan, C., Bai, X., Fan, L., Ji, Y., Li, X., and Chen, Q. (2005). Cytoprotection by glycine against ATP-depletion-induced injury is mediated by glycine receptor in renal cells. Biochem J, 390(Pt 2), 447-453. doi: 10.1042/bj20050141
Pelczer, I. (2005). High-resolution NMR for metabomics. Curr Opin Drug Discov Devel, 8(1), 127-133.
Pirisino, R., Ghelardini, C., De Siena, G., Malmberg, P., Galeotti, N., Cioni, L., . . . Raimondi, L. (2005). Methylamine: a new endogenous modulator of neuron firing? Med Sci Monit, 11(8), RA 257-261.
Reboucas, N. A., Fernandes, D. T., Elias, M. M., de Mello-Aires, M., and Malnic, G. (1984). Proximal tubular HCO3-, H+ and fluid transport during maleate-induced acidification defect. Pflugers Arch, 401(3), 266-271.
Rocha, C. M., Barros, A. S., Gil, A. M., Goodfellow, B. J., Humpfer, E., Spraul, M., . . . Duarte, I. F. (2010). Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res, 9(1), 319-332. doi: 10.1021/pr9006574
Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V., Hough, T., Cheeseman, M., . . . Griffin, J. L. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics, 29(2), 99-108. doi: 10.1152/physiolgenomics.00194.2006
Serkova, N. J., and Niemann, C. U. (2006). Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn, 6(5), 717-731. doi: 10.1586/14737159.6.5.717
Shikano, N., Nakajima, S., Kotani, T., Itoh, Y., Nishii, R., Yoshimoto, M., . . . Kawai, K. (2006). Detection of maleate-induced Fanconi syndrome by decreasing accumulation of 125I-3-iodo-alpha-methyl-L-tyrosine in the proximal tubule segment-1 region of renal cortex in mice: a trial of separate evaluation of reabsorption. Ann Nucl Med, 20(3), 175-181.
Short, R. D., Johannsen, F. R., Levinskas, G. J., Rodwell, D. E., and Schardein, J. L. (1986). Teratology and multigeneration reproduction studies with maleic anhydride in rats. Fundam Appl Toxicol, 7(3), 359-366.
Sieber, M., Hoffmann, D., Adler, M., Vaidya, V. S., Clement, M., Bonventre, J. V., . . . Mally, A. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol Sci, 109(2), 336-349. doi: 10.1093/toxsci/kfp070
Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., . . . Marrie, T. J. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem, 79(18), 6995-7004. doi: 10.1021/ac0708588
Smolinska, A., Blanchet, L., Buydens, L. M., and Wijmenga, S. S. (2012). NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta, 750, 82-97. doi: 10.1016/j.aca.2012.05.049
Song, S. H., Shen, X. Y., Liu, F., Tang, Y., Wang, Z. M., and Fu, Z. R. (2009). Protective effects of astilbin on renal ischemia-reperfusion injury in rats. Zhong Xi Yi Jie He Xue Bao, 7(8), 753-757. doi: 10.3736/jcim20090809
Stiegel, M. A., Pleil, J. D., Sobus, J. R., Angrish, M. M., and Morgan, M. K. (2015). Kidney injury biomarkers and urinary creatinine variability in nominally healthy adults. Biomarkers, 20(6-7), 436-452. doi: 10.3109/1354750x.2015.1094136
Tate, B., Grayson, M., and Eckroth, D. (1981). Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons: New York.
Verani, R. R., Brewer, E. D., Ince, A., Gibson, J., and Bulger, R. E. (1982). Proximal tubular necrosis associated with maleic acid administration to the rat. Lab Invest, 46(1), 79-88.
Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J., and Yanes, O. (2012). A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data. Metabolites, 2(4), 775-795. doi: 10.3390/metabo2040775
Viola, A., Confort-Gouny, S., Ranjeva, J. P., Chabrol, B., Raybaud, C., Vintila, F., and Cozzone, P. J. (2002). MR imaging and MR spectroscopy in rhizomelic chondrodysplasia punctata. AJNR Am J Neuroradiol, 23(3), 480-483.
Voogel, A. J., Koopman, M. G., Hart, A. A., van Montfrans, G. A., and Arisz, L. (2001). Circadian rhythms in systemic hemodynamics and renal function in healthy subjects and patients with nephrotic syndrome. Kidney Int, 59(5), 1873-1880. doi: 10.1046/j.1523-1755.2001.0590051873.x
Walsh, M. C., Brennan, L., Malthouse, J. P., Roche, H. M., and Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr, 84(3), 531-539.
Wang, X., Lv, H., Zhang, A., Sun, W., Liu, L., Wang, P., . . . Sun, H. (2014). Metabolite profiling and pathway analysis of acute hepatitis rats by UPLC-ESI MS combined with pattern recognition methods. Liver Int, 34(5), 759-770. doi: 10.1111/liv.12301
Winiarska, K., Szymanski, K., Gorniak, P., Dudziak, M., and Bryla, J. (2009). Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie, 91(2), 261-270. doi: 10.1016/j.biochi.2008.09.006
Wishart, D. S. (2005). Metabolomics: the principles and potential applications to transplantation. Am J Transplant, 5(12), 2814-2820. doi: 10.1111/j.1600-6143.2005.01119.x
Worley, B., and Powers, R. (2013). Multivariate Analysis in Metabolomics. Current Metabolomics, 1(1), 92-107. doi: 10.2174/2213235X11301010092
Yin, M., Zhong, Z., Connor, H. D., Bunzendahl, H., Finn, W. F., Rusyn, I., . . . Thurman, R. G. (2002). Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo. Am J Physiol Renal Physiol, 282(3), F417-423. doi: 10.1152/ajprenal.00011.2001
Zager, R. A., Johnson, A. C., Naito, M., Lund, S. R., Kim, N., and Bomsztyk, K. (2008). Growth and development alter susceptibility to acute renal injury. Kidney Int, 74(5), 674-678. doi: 10.1038/ki.2008.251
Zhao, L., Zhang, H., Yang, Y., Zheng, Y., Dong, M., Wang, Y., . . . Gao, H. (2014). Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats. PLoS One, 9(9), e108678. doi: 10.1371/journal.pone.0108678
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49663-
dc.description.abstract順丁烯二酸 (Maleic acid),過去常用於樹脂原料、殺蟲劑與工業黏著劑的原料。2013年,台灣發生的「毒澱粉事件」就是在市售澱粉製品中檢測出違法的食品添加物順丁烯二酸,其製品包括黑輪、肉圓、米粉和粉圓等等。添加目的是為了提升澱粉的穩定性、口感和降低成本,而在食用的化製澱粉上,我國核准的有21種,但不包含順丁烯二酸。過去在動物實驗上,順丁烯二酸的暴露會對腎臟造成影響,出現范可尼氏症候群 (Fanconi syndrome)的症狀,影響近端小管的再吸收功能和腎臟的酸鹼平衡,造成有磷酸鹽尿 (Phosphaturia)和糖尿 (Glucosuria)的產生。然而,長期暴露下是否會對其他器官造成影響與在體內的影響機制能有待確認。
本次的研究對象為Sprague-Dawley (SD) 品系的大鼠,依據暴露劑量不同分為四個組:低 (6 mg/kg)、中 (20 mg/kg)、高 (60 mg/kg)和控制組。在生物監測的部份,採集特定時間點早晚的尿液(第0、7、14、21和28天),並利用600 MHz 的核磁共振儀來獲得大鼠尿液中的代謝物profile。最後使用主成分分析、單變量無母數分析多樣本中位數差異檢定和Dunn式事後檢定來分析代謝物和暴露劑量之間的關係。
研究結果顯示,高劑量暴露下與控制組的代謝體差異有所變化,而分界點從14天之後有明顯不同,暴露組在第28天尿液中的代謝物如acetoacetate和 hippurate相較於控制組有顯著上升;而 alanine 和acetate 則是相較於控制組有顯著下降,這些代謝物的改變可能跟能量產生受到影響與器官損害是有相關的,這部分都可以和過去腎臟與肝臟的切片結果相互呼應,除此之外,代謝物影響的效果隨著暴露劑量越高、暴露時間越久,所造成的影響更加明顯。
藉由研究大鼠在暴露順丁烯二酸後尿液中代謝物的變化,可以更為了解順丁烯二酸所引起的毒理機制,在未來,若能進一步的在其他動物上或是血液介質裡做探索,相信可以提供更多生物資訊以推估人體暴露後所產生良健康效應。
zh_TW
dc.description.abstractMore and more food safety issues are noticed by the public. In 2013, the Ministry of Health and Welfare (MOHW) in Taiwan declared that some starch-processed foods were illegally added food addictive, maleic acid/maleic anhydride. Modified starch can enhance favorable properties, such as viscosity, texture, and elasticity in food. Accidental consumption of maleic acid at low levels does not cause significant adverse health effects; however, long term exposure of high levels of maleic acid can induce kidney damage. The molecular effects of repeated maleic acid exposure are still largely unknown. In this study, we intend to understand metabolic effects of repeated exposure to maleic acid in rats using 1H NMR-based metabolomic approach.
Rat urinary metabolome were examined to study time-course and dose-response of maleic acid. Adult male Sprague-Dawley (SD) rats were divided into control, low-dose (6 mg/kg), medium-dose (20 mg/kg), and high-dose (60 mg/kg) and treated with vehicle or maleic acid via oral gavage daily. Urine samples were collected twice a day (once during daytime and once at night) on day 0, 7, 14, 21, and 28 and then examined by high-resolution 1H nuclear magnetic resonance (NMR) followed by multivariate statistical analysis. The principle component analysis (PCA) score plots from the anlaysis of urinalry metabolome showed changes of metabolome patterns within different exposure groups. Clear metabolome seperation between high-dose and the control groups were observed from the night samples of day 14 and later. The increased levels of acetoacetate and hippurate, and decreased levels of alanine and acetate in the treatment groups were observed in the night samples of day 28. Changes of metabolites are related with environment stress and energy metabolism. Metabolic effects of maleic acid exposure are obvious on rats in high dose group and at last time points. By investigating the perturbation of urinary metabolome in SD rats can assist urinary biomarker discovery for maleic acid and find out possible toxic mechanisms induced by maleic acid.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:36Z (GMT). No. of bitstreams: 1
ntu-105-R03844009-1.pdf: 1671792 bytes, checksum: 43e84c5a8c454a6487a7bb312321ab19 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
Content vii
Figure Index x
Table Index xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Maleic acid 2
1.3 NMR-based metabolomics 4
1.4 Study objectives 6
Chapter 2 Materials and methods 8
2.1 Experiment flow chart 8
2.2 Animal treatments 9
2.3 Histopathological Pretreatment 10
2.4 Sample preparation for metabolic analysis 10
2.5 1H NMR spectral acquisition 11
2.6 NMR spectral processing 12
2.7 Metabolite identification 12
2.8 Multivariate data analysis 13
2.9 Statistical analysis 14
Chapter 3 Results 16
3.1 Histopathology and clinical observation 16
3.2 NMR spectra 17
3.3 Metabolic responses of day and night in the rat urine 18
3.4 Time-dependent maleic acid metabolic effects on rat urine 19
3.5 Dose-dependent maleic acid metabolic effects on rat urine 20
Chapter 4 Discussion 23
4.1 Day and night metabolome variation 24
4.2 Time effects of maleic acid on metabolic changes 25
4.2.1 Day metabolite changes in rat's urine between different time point 26
4.2.2 Night metabolite changes in rat's urine between different time point 29
4.3 Dose effects of maleic acid on metabolic changes 31
4.3.1 Day metabolite changes in rat's urine between different doses 31
4.3.2 Night metabolite changes in rat's urine between different doses 32
4.4 Strengths and limitations 34
4.4.1 Study strengths 34
4.4.2 Study limitations 35
4.5 Conclusion 36
References 37
dc.language.isoen
dc.subject毒性zh_TW
dc.subject順丁烯二酸zh_TW
dc.subject核磁共振儀zh_TW
dc.subject代謝體學zh_TW
dc.subject尿液zh_TW
dc.subject腎臟zh_TW
dc.subjectmaleic aciden
dc.subjecttoxicityen
dc.subjectnuclear magnetic resonanceen
dc.subjectmetabolomicsen
dc.subjecturineen
dc.title以核磁共振為主的代謝體學探討順丁烯二酸重複暴露下對於大鼠之影響zh_TW
dc.title1H NMR-based Metabolomics to Study Repeated Exposure to Maleic Acid in Ratsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊淳宇(Chun-Yu Chuang),林菀俞(Wan-Yu Lin),陳鑫昌(Hsin-Chang Chen),唐川禾(Chuan-Ho Tang)
dc.subject.keyword順丁烯二酸,核磁共振儀,代謝體學,尿液,腎臟,毒性,zh_TW
dc.subject.keywordmaleic acid,urine,metabolomics,nuclear magnetic resonance,toxicity,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201602690
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved