Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉(Ching-Yu Lin)
dc.contributor.authorZhi-Yi Duen
dc.contributor.author杜知宜zh_TW
dc.date.accessioned2021-06-15T11:40:32Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationAbbott, B. D., Wolf, C. J., Schmid, J. E., Das, K. P., Zehr, R. D., Helfant, L., . . . Lau, C. (2007). Perfluorooctanoic acid-induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator-activated receptor-alpha. Toxicological Sciences, 98, 571-581.
Abdellatif, A. G., Preat, V., Taper, H. S., and Roberfroid, M. (1991). THE MODULATION OF RAT-LIVER CARCINOGENESIS BY PERFLUOROOCTANOIC ACID, A PEROXISOME PROLIFERATOR. Toxicology and Applied Pharmacology, 111, 530-537.
Api, A. M. (2001). Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol, 39, 97-108.
Austin, M. E., Kasturi, B. S., Barber, M., Kannan, K., MohanKumar, P. S., and MohanKumar, S. M. J. (2003). Neuroendocrine effects of perfluorooctane sulfonate in rats. Environmental Health Perspectives, 111, 1485-1489.
Barr, D. B., Wilder, L. C., Caudill, S. P., Gonzalez, A. J., Needham, L. L., and Pirkle, J. L. (2005). Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect, 113, 192-200.
Bijland, S., Rensen, P. C., Pieterman, E. J., Maas, A. C., van der Hoorn, J. W., van Erk, M. J., . . . Princen, H. M. (2011). Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci, 123, 290-303.
Bility, M. T., Thompson, J. T., McKee, R. H., David, R. M., Butala, J. H., Vanden Heuvel, J. P., and Peters, J. M. (2004). Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicological Sciences, 82, 170-182.
Braun, J. M., Chen, A. M., Romano, M. E., Calafat, A. M., Webster, G. M., Yolton, K., and Lanphear, B. P. (2016). Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study. Obesity, 24, 231-237.
Buser, M. C., Murray, H. E., and Scinicariello, F. (2014). Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. International Journal of Hygiene and Environmental Health, 217, 687-694.
Butenhoff, J. L., Kennedy, G. L., Frame, S. R., O'Connor, J. C., and York, R. G. (2004). The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology, 196, 95-116.
Caprio, S., Plewe, G., Diamond, M. P., Simonson, D. C., Boulware, S. D., Sherwin, R. S., and Tamborlane, W. V. (1989). INCREASED INSULIN-SECRETION IN PUBERTY - A COMPENSATORY RESPONSE TO REDUCTIONS IN INSULIN SENSITIVITY. Journal of Pediatrics, 114, 963-967.
Chen, M. H., Ha, E. H., Liao, H. F., Jeng, S. F., Su, Y. N., Wen, T. W., . . . Chen, P. C. (2013). Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology, 24, 800-808.
Chen, W., and Chang, M. H. (2010). New Growth Charts for Taiwanese Children and Adolescents Based on World Health Organization Standards and Health-related Physical Fitness. Pediatrics and Neonatology, 51, 69-79.
Cheng, J., Lv, S., Nie, S., Liu, J., Tong, S., Kang, N., . . . Yang, D. (2016). Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquat Toxicol, 176, 45-52.
Cheng, S. S., Rhee, E. P., Larson, M. G., Lewis, G. D., McCabe, E. L., Shen, D. X., . . . Wang, T. J. (2012). Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans. Circulation, 125, 2222-U2132.
Cho, S. C., Bhang, S. Y., Hong, Y. C., Shin, M. S., Kim, B. N., Kim, J. W., . . . Kim, H. W. (2010). Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect, 118, 1027-1032.
Dong, G. H., Tung, K. Y., Tsai, C. H., Liu, M. M., Wang, D., Liu, W., . . . Chen, P. C. (2013). Serum Polyfluoroalkyl Concentrations, Asthma Outcomes, and Immunological Markers in a Case-Control Study of Taiwanese Children. Environmental Health Perspectives, 121, 507-513.
Dullaart, R. P., Gruppen, E. G., Connelly, M. A., Otvos, J. D., and Lefrandt, J. D. (2015). GlycA, a biomarker of inflammatory glycoproteins, is more closely related to the leptin/adiponectin ratio than to glucose tolerance status. Clin Biochem, 48, 811-814.
Eggers Pedersen, K., Basu, N., Letcher, R., Greaves, A. K., Sonne, C., Dietz, R., and Styrishave, B. (2015). Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). Environ Res, 138, 22-31.
Ellis, J. K., Athersuch, T. J., Thomas, L. D., Teichert, F., Perez-Trujillo, M., Svendsen, C., . . . Keun, H. C. (2012). Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med, 10, 61.
Engel, S. M., Miodovnik, A., Canfield, R. L., Zhu, C., Silva, M. J., Calafat, A. M., and Wolff, M. S. (2010). Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect, 118, 565-571.
Eriksson, L., Trygg, J., and Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS (R) models. Journal of Chemometrics, 22, 594-600.
Eveillard, A., Lasserre, F., de Tayrac, M., Polizzi, A., Claus, S., Canlet, C., . . . Pineau, T. (2009). Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicology and Applied Pharmacology, 236, 282-292.
Fang, X., Gao, G., Xue, H., Zhang, X., and Wang, H. (2012). Exposure of perfluorononanoic acid suppresses the hepatic insulin signal pathway and increases serum glucose in rats. Toxicology, 294, 109-115.
Ferguson, K. K., Cantonwine, D. E., Rivera-Gonzalez, L. O., Loch-Caruso, R., Mukherjee, B., Del Toro, L. V. A., . . . Meeker, J. D. (2014). Urinary Phthalate Metabolite Associations with Biomarkers of Inflammation and Oxidative Stress Across Pregnancy in Puerto Rico. Environmental Science & Technology, 48, 7018-7025.
Ferguson, K. K., Loch-Caruso, R., and Meeker, J. D. (2011). Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006. Environmental Research, 111, 718-726.
Foster, P. M. (2006). Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl, 29, 140-147; discussion 181-145.
Fournier, T., Medjoubi-N, N., and Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1482, 157-171.
Fromme, H., Tittlemier, S. A., Volkel, W., Wilhelm, M., and Twardella, D. (2009). Perfluorinated compounds - Exposure assessment for the general population in western countries. International Journal of Hygiene and Environmental Health, 212, 239-270.
Fu, Y. N., Wang, T. Y., Fu, Q. L., Wang, P., and Lu, Y. L. (2014). Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicology and Environmental Safety, 106, 246-252.
Geiger, S. D., Xiao, J., and Shankar, A. (2013). Positive Association Between Perfluoroalkyl Chemicals and Hyperuricemia in Children. American Journal of Epidemiology, 177, 1255-1262.
Ginsberg, H. N., Zhang, Y. L., and Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36, 232-240.
Gleason, J. A., Post, G. B., and Fagliano, J. A. (2015). Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res, 136, 8-14.
Gonzalez-Castro, M. I., Olea-Serrano, M. F., Rivas-Velasco, A. M., Medina-Rivero, E., Ordonez-Acevedo, L. G., and De Leon-Rodriguez, A. (2011). Phthalates and bisphenols migration in Mexican food cans and plastic food containers. Bull Environ Contam Toxicol, 86, 627-631.
Gray, L. E., Jr., Ostby, J., Furr, J., Price, M., Veeramachaneni, D. N., and Parks, L. (2000). Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci, 58, 350-365.
Hauser, R., and Calafat, A. M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62, 13.
He, Q. H., Ren, P. P., Kong, X. F., Xu, W. X., Tang, H. R., Yin, Y. L., and Wang, Y. L. (2011). Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets. Molecular Biosystems, 7, 2147-2155.
Heudorf, U., Mersch-Sundermann, V., and Angerer, J. (2007). Phthalates: toxicology and exposure. Int J Hyg Environ Health, 210, 623-634.
Hochepied, T., Berger, F. G., Baumann, H., and Libert, C. (2003). alpha(1)-Acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine & Growth Factor Reviews, 14, 25-34.
Hoffman, K., Webster, T. F., Weisskopf, M. G., Weinberg, J., and Vieira, V. M. (2010). Exposure to Polyfluoroalkyl Chemicals and Attention Deficit/Hyperactivity Disorder in U.S. Children 12-15 Years of Age. Environmental Health Perspectives, 118, 1762-1767.
Hsieh, C. J., Hsieh, W. S., Su, Y. N., Liao, H. F., Jeng, S. F., Taso, F. M., . . . Chen, P. C. (2011). The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes, 4, 291.
Hsu, J. Y., Hsu, J. F., Ho, H. H., Chiang, C. F., and Liao, P. C. (2013). Background levels of persistent organic pollutants in humans from Taiwan: perfluorooctane sulfonate and perfluorooctanoic acid. Chemosphere, 93, 532-537.
Hurst, C. H., and Waxman, D. J. (2003). Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicological Sciences, 74, 297-308.
Imes, C. C., and Austin, M. A. (2013). Low-density lipoprotein cholesterol, apolipoprotein B, and risk of coronary heart disease: from familial hyperlipidemia to genomics. Biol Res Nurs, 15, 292-308.
Jaakkola, J. J., and Knight, T. L. (2008). The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environ Health Perspect, 116, 845-853.
James-Todd, T., Stahlhut, R., Meeker, J. D., Powell, S. G., Hauser, R., Huang, T. Y., and Rich-Edwards, J. (2012). Urinary Phthalate Metabolite Concentrations and Diabetes among Women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environmental Health Perspectives, 120, 1307-1313.
Jiang, Z. G., de Boer, I. H., Mackey, R. H., Jensen, M. K., Lai, M., Robson, S. C., . . . Mukamal, K. J. (2016). Associations of insulin resistance, inflammation and liver synthetic function with very low-density lipoprotein: The Cardiovascular Health Study. Metabolism-Clinical and Experimental, 65, 92-99.
Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K. S., Loganathan, B. G., . . . Aldoust, K. M. (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol, 38, 4489-4495.
Keil, D. E., Mehlmann, T., Butterworth, L., and Peden-Adams, M. M. (2008). Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicological Sciences, 103, 77-85.
Kim, J. H., Park, H. Y., Bae, S., Lim, Y. H., and Hong, Y. C. (2013). Diethylhexyl Phthalates Is Associated with Insulin Resistance via Oxidative Stress in the Elderly: A Panel Study. PLoS One, 8, 8.
Kim, S., Kang, S., Lee, G., Lee, S., Jo, A., Kwak, K., . . . Choi, K. (2014). Urinary phthalate metabolites among elementary school children of Korea: Sources, risks, and their association with oxidative stress marker. Science of the Total Environment, 472, 49-55.
Kuo, C. P., Lee, S. H., Wu, W. Y., Liao, W. C., Lin, S. J., and Lee, M. C. (2010). Birth outcomes and risk factors in adolescent pregnancies: results of a Taiwanese national survey. Pediatr Int, 52, 447-452.
Labow, B. I., and Souba, W. W. (2000). Glutamine. World Journal of Surgery, 24, 1503-1513.
Land, M., de Wit, C. A., Cousins, I. T., Herzke, D., Johansson, J., and Martin, J. W. (2015). What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review protocol. Environmental Evidence, 4, 1-13.
Langley, A. E., and Pilcher, G. D. (1985). THYROID, BRADYCARDIC AND HYPOTHERMIC EFFECTS OF PERFLUORO-N-DECANOIC ACID IN RATS. Journal of Toxicology and Environmental Health, 15, 485-491.
Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., and Seed, J. (2007). Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicological Sciences, 99, 366-394.
Lau, C., Thibodeaux, J. R., Hanson, R. G., Narotsky, M. G., Rogers, J. M., Lindstrom, A. B., and Strynar, M. J. (2006). Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicological Sciences, 90, 510-518.
Lau, C., Thibodeaux, J. R., Hanson, R. G., Rogers, J. M., Grey, B. E., Stanton, M. E., . . . Stevenson, L. A. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicological Sciences, 74, 382-392.
Lien, G. W., Wen, T. W., Hsieh, W. S., Wu, K. Y., Chen, C. Y., and Chen, P. C. (2011). Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 879, 641-646.
Lin, C. Y., Chen, P. C., Lin, Y. C., and Lin, L. Y. (2009). Association Among Serum Perfluoroalkyl Chemicals, Glucose Homeostasis, and Metabolic Syndrome in Adolescents and Adults. Diabetes Care, 32, 702-707.
Lin, C. Y., Lin, L. Y., Wen, T. W., Lien, G. W., Chien, K. L., Hsu, S. H. J., . . . Su, T. C. (2013a). Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. International Journal of Cardiology, 168, 3309-3316.
Lin, C. Y., Wen, L. L., Lin, L. Y., Wen, T. W., Lien, G. W., Hsu, S. H. J., . . . Su, T. C. (2013b). The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. Journal of Hazardous Materials, 244, 637-644.
Lin, S., Ku, H. Y., Su, P. H., Chen, J. W., Huang, P. C., Angerer, J., and Wang, S. L. (2011). Phthalate exposure in pregnant women and their children in central Taiwan. Chemosphere, 82, 947-955.
Lind, P. M., Zethelius, B., and Lind, L. (2012). Circulating Levels of Phthalate Metabolites Are Associated With Prevalent Diabetes in the Elderly. Diabetes Care, 35, 1519-1524.
Long, Y., Wang, Y. B., Ji, G. X., Yan, L. F., Hu, F., and Gu, A. H. (2013). Neurotoxicity of Perfluorooctane Sulfonate to Hippocampal Cells in Adult Mice. PLoS One, 8, 9.
Luebker, D. J., Hansen, K. J., Bass, N. M., Butenhoff, J. L., and Seacat, A. M. (2002). Interactions of flurochemicals with rat liver fatty acid-binding protein. Toxicology, 176, 175-185.
Macdonald, N., Chevalier, S., Tonge, R., Davison, N., Rowlinson, R., Young, J., . . . Roberts, R. (2001). Quantitative proteomic analysis of mouse liver response to the peroxisome proliferator diethylhexylphthalate (DEHP). Archives of Toxicology, 75, 415-424.
Martinelli, M. I., Mocchiutti, N. O., and Bernal, C. A. (2006). Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals. Human & Experimental Toxicology, 25, 531-538.
Meeker, J. D., Sathyanarayana, S., and Swan, S. H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 2097-2113.
Menge, B. A., Schrader, H., Ritter, P. R., Ellrichmann, M., Uhl, W., Schmidt, W. E., and Meier, J. J. (2010). Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regulatory Peptides, 160, 75-80.
Moussallieh, F. M., Elbayed, K., Chanson, J. B., Rudolf, G., Piotto, M., De Seze, J., and Namer, I. J. (2014). Serum analysis by H-1 Nuclear Magnetic Resonance spectroscopy: a new tool for distinguishing neuromyelitis optica from multiple sclerosis. Multiple Sclerosis Journal, 20, 558-565.
Mylchreest, E., Wallace, D. G., Cattley, R. C., and Foster, P. M. (2000). Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci, 55, 143-151.
Nakamura, H., Nishikata, N., Kawai, N., Imaizumi, A., Miyano, H., Mori, M., . . . Noguchi, Y. (2016). Plasma Amino Acid Profiles in Healthy East Asian Subpopulations Living in Japan. American Journal of Human Biology, 28, 236-239.
Nelson, J. W., Hatch, E. E., and Webster, T. F. (2010). Exposure to Polyfluoroalkyl Chemicals and Cholesterol, Body Weight, and Insulin Resistance in the General US Population. Environmental Health Perspectives, 118, 197-202.
Nicholson, J. K., Foxall, P. J. D., Spraul, M., Farrant, R. D., and Lindon, J. C. (1995). 750-MHZ H-1 AND H-1-C-13 NMR-SPECTROSCOPY OF HUMAN BLOOD-PLASMA. Analytical Chemistry, 67, 793-811.
Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., and Zobel, L. R. (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives, 115, 1298-1305.
Olsen, L., Lind, L., and Lind, P. M. (2012). Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicology and Environmental Safety, 80, 179-183.
Park, S., Sadanala, K. C., and Kim, E. K. (2015). A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes. Mol Cells, 38, 587-596.
Polanska, K., Ligocka, D., Sobala, W., and Hanke, W. (2014). Phthalate exposure and child development: the Polish Mother and Child Cohort Study. Early Hum Dev, 90, 477-485.
Prati, D., Taioli, E., Zanella, A., Della Torre, E., Butelli, S., Del Vecchio, E., . . . Sirchia, G. (2002). Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med, 137, 1-10.
Rae, C. D. (2014). A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain H-1 Magnetic Resonance Spectra. Neurochemical Research, 39, 1-36.
Schecter, A., Colacino, J., Haffner, D., Patel, K., Opel, M., Papke, O., and Birnbaum, L. (2010). Perfluorinated Compounds, Polychlorinated Biphenyls, and Organochlorine Pesticide Contamination in Composite Food Samples from Dallas, Texas, USA. Environmental Health Perspectives, 118, 796-802.
Sparks, J. D., Sparks, C. E., and Adeli, K. (2012). Selective Hepatic Insulin Resistance, VLDL Overproduction, and Hypertriglyceridemia. Arteriosclerosis Thrombosis and Vascular Biology, 32, 2104-2112.
Stahlhut, R. W., van Wijngaarden, E., Dye, T. D., Cook, S., and Swan, S. H. (2007). Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult US males. Environmental Health Perspectives, 115, 876-882.
Steenland, K., Fletcher, T., and Savitz, D. A. (2010). Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA). Environmental Health Perspectives, 118, 1100-1108.
Swan, S. H. (2008). Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res, 108, 177-184.
Teitelbaum, S. L., Mervish, N., Moshier, E. L., Vangeepuram, N., Galvez, M. P., Calafat, A. M., . . . Wolff, M. S. (2012). Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environmental Research, 112, 186-193.
Toft, G., Jonsson, B. A. G., Lindh, C. H., Giwercman, A., Spano, M., Heederik, D., . . . Bonde, J. P. (2012). Exposure to perfluorinated compounds and human semen quality in arctic and European populations. Human Reproduction, 27, 2532-2540.
Toprak, D., Bukulmez, A., Dogan, N., Oztekin, O., and Koken, T. (2014). Evaluation of Serum Lipid Profiles in Turkish Children Aged Two to Eighteen Years. West Indian Medical Journal, 63, 588-595.
Trasande, L., Spanier, A. J., Sathyanarayana, S., Attina, T. M., and Blustein, J. (2013). Urinary Phthalates and Increased Insulin Resistance in Adolescents. Pediatrics, 132, E646-E655.
Wan, H. T., Leung, P. Y., Zhao, Y. G., Wei, X., Wong, M. H., and Wong, C. K. (2013). Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations. J Hazard Mater, 261, 763-769.
Wang-Sattler, R., Yu, Y., Mittelstrass, K., Lattka, E., Altmaier, E., Gieger, C., . . . Illig, T. (2008). Metabolic profiling reveals distinct variations linked to nicotine consumption in humans--first results from the KORA study. PLoS One, 3, e3863.
Wang, You, L., Zeng, Q., Sun, Y., Huang, Y. H., Wang, C., . . . Lu, W. Q. (2015). Phthalate exposure and human semen quality: Results from an infertility clinic in China. Environ Res, 142, 1-9.
Wang, B., Wang, H., Zhou, W., Chen, Y., Zhou, Y., and Jiang, Q. (2015). Urinary excretion of phthalate metabolites in school children of China: implication for cumulative risk assessment of phthalate exposure. Environ Sci Technol, 49, 1120-1129.
Wang, H., Zhou, Y., Tang, C., He, Y., Wu, J., Chen, Y., and Jiang, Q. (2013). Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PLoS One, 8, e56800.
Wang, Y., Fu, W., and Liu, J. (2016). Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. Journal of Maternal-Fetal & Neonatal Medicine, 29, 660-668.
Wang, Y., Rogan, W. J., Chen, H. Y., Chen, P. C., Su, P. H., Chen, H. Y., and Wang, S. L. (2015). Prenatal exposure to perfluroalkyl substances and children's IQ: The Taiwan maternal and infant cohort study. Int J Hyg Environ Health, 218, 639-644.
Wolf, C. J., Takacs, M. L., Schmid, J. E., Lau, C., and Abbott, B. D. (2008). Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicological Sciences, 106, 162-171.
Yeung, L. W., So, M. K., Jiang, G., Taniyasu, S., Yamashita, N., Song, M., . . . Lam, P. K. (2006). Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environ Sci Technol, 40, 715-720.
Yuan, T. H., Chung, M. K., Lin, C. Y., Chen, S. T., Wu, K. Y., and Chan, C. C. (2016). Metabolic profiling of residents in the vicinity of a petrochemical complex. Sci Total Environ, 548-549, 260-269.
Zeng, X. W., Qian, Z. M., Emo, B., Vaughn, M., Bao, J., Qin, X. D., . . . Dong, G. H. (2015). Association of polyfluoroalkyl chemical exposure with serum lipids in children. Science of the Total Environment, 512, 364-370.
Zhao, Y., Chen, L., Li, L. X., Xie, C. M., Li, D., Shi, H. J., and Zhang, Y. H. (2014). Gender-specific relationship between prenatal exposure to phthalates and intrauterine growth restriction. Pediatric Research, 76, 401-408.
Zhao, Y., Tan, Y. S., Haslam, S. Z., and Yang, C. F. (2010). Perfluorooctanoic Acid Effects on Steroid Hormone and Growth Factor Levels Mediate Stimulation of Peripubertal Mammary Gland Development in C57Bl/6 Mice. Toxicological Sciences, 115, 214-224.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49662-
dc.description.abstract全氟碳化物 (Perfluoroalkyl substances, PFASs) 及鄰苯二甲酸酯類 (phthalates, PAEs) 皆經常被使用於工業用品及消費產品中,因此這些物質能在人體中被廣泛地偵測到。近年來許多流行病學研究開始探討人體暴露到PFASs及PAEs對於健康效應的影響,然而這些流行病學調查尚無法針對這些化學物質可能的影響機制與所造成的健康效應之間提供一個完整且清楚的關聯性。因此本研究的目的是利用代謝體學的方法來了解PFASs及PAEs之環境暴露對於兒童產生不良健康效應的可能影響機制,以期了解在成人中有顯著健康效應之前可能的軌跡。
本研究納入了290位來自台灣出生世代研究 (Taiwan Birth Panel Study, TBPS)與台灣早期追蹤研究 (Taiwan Early-Life Cohort, TEC) 的孩童 (8~10歲),以高效能液相層析串聯質譜儀分析其生物液中的13種PFASs與12種PAEs之代謝物濃度,並應用質子核磁共振儀結合多變量統計模式與複線性迴歸分析來探討孩童暴露到不同濃度的PFASs及PAEs時,其血清內生性代謝物的特定變化情形,此外相關的問卷資料也被納入分析以釐清代謝體的改變與這些化學物質的不同暴露濃度之可能關聯。
在此研究結果中顯示,孩童暴露到不同濃度之PFUnDA (perfluoro-n-undecanoic acid)、PFTrDA (perfluoro-n-tridecanoic acid)、MiBP (mono-isobutyl phthalate)及總DEHP (di(2-ethylhexyl) phthalate)後被發現會有不同的內生性代謝物變化趨勢,並且孩童的血清代謝體變化也會與其居住地、性別及身體質量指數有關。有三種血清代謝物與多種暴露物質相關: 極低密度脂蛋白(VLDL)與PFOS (perfluoro-n-octyl sulfonate、PFNA (perfluoro-n-nonanoic acid)、MiBP及DEHP有關,指出可能對於胰島素抗性與脂蛋白代謝造成影響;榖胺醯胺 (glutamine)與PFOS、PFNA及DEHP 有關,可能與胰島素分泌與神經傳導有連結;鯊肌醇 (scyllo-inositol)與PFNA、 MnBP (mono-n-butyl phthalate)及DEHP有關,可能會改變肝臟醣酵解與神經發育。此外,乙醯基糖蛋白 (glycoprotein acetyls) 只在居住於工業地區之族群中發現與MiBP有關,可能指出與系統性發炎反應有關。
上述結論中,極低密度脂蛋白 (VLDL)、榖胺醯胺 (glutamine)、鯊肌醇 (scyllo-inositol) 及乙醯基糖蛋白 (glycoprotein acetyls ) 的改變可能與數種PFASs與PAEs暴露相關,顯示了其可能對孩童健康造成的不良影響。此研究辨認由環境暴露所造成的代謝擾動及建議出可能造成的不良健康效應及可能影響的生物功能,代謝體學是一個有效的方法探討複雜暴露的可能健康效應。
zh_TW
dc.description.abstractPerfluoroalkyl substances (PFASs) and phthalates (PAEs) are both commonly used in industrial applications and consumer products, and therefore are detectable in the human samples widely. Recent epidemiologic studies have been focused on some health effects of PFAS and PAE exposure in the human. However, these epidemiologic surveys still cannot provide complete and clear association to link possible mechanisms of these chemicals with their adverse health effects. The purpose of this study is to understand possible mechanisms of environmental exposure to PFASs and PAEs in causing adverse health effects in children, who can provide a trajectory for significant effects in adulthood, by using metabolomic approach.
290 Taiwanese children (8-10 years) from Taiwan Birth Panel Study (TBPS) and Taiwan Early-Life Cohort (TEC) were included in this study. Thirteen PFASs and twelve phthalate metabolites were analyzed in their biofluids by high performance liquid chromatography/ tandem mass spectrometry. Proton nuclear magnetic resonance spectrometry combined with multivariate statistical methods and multiple linear regression models were applied to examine serum metabolic patterns in children exposed to different levels of PFASs and PAEs. Moreover, questionnaire data were collected to associate with the changes of metabolome and exposure levels of these chemicals.
In our results, different metabolic patterns were discovered in children exposed to different levels of PFUnDA (perfluoro-n-undecanoic acid), PFTrDA (perfluoro-n-tridecanoic acid), MiBP (mono-isobutyl phthalate) and ΣDEHP (di(2-ethylhexyl) phthalate). In addition, the metabolomes of children's serum were associated with their residential regions, gender and their body mass indexes. Three serum metabolites were associated with multiple exposures: VLDL level was associated with PFOS (perfluoro-n-octyl sulfonate, PFNA (perfluoro-n-nonanoic acid), MiBP and DEHP levels, which may indicate the possible effects on insulin resistance and lipoprotein metabolism; glutamine level was associated with PFOS, PFNA and DEHP exposure, which may be linked with alteration of insulin secretion and neurological system; scyllo-inositol, associated with PFNA, MnBP (mono-n-butyl phthalate) and DEHP exposure, may alter liver glycolysis and neurodevelopment. Furthermore, glycoprotein acetyls level associated with MiBP exposure, which was only discovered in industrial region, may indicate the response of systematic inflammation.
In conclusion, VLDL, glutamine, scyllo-inositol and glycoprotein acetyls were found to be associated with several PFAS and PAE exposures, indicating the possible adverse effects on children's health. This study shows that metabolomics is a powerful approach to identify metabolic perturbation caused by environmental exposure and to suggest possible effects on biological function of these chemicals and their possible adverse health effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:32Z (GMT). No. of bitstreams: 1
ntu-105-R03844008-1.pdf: 1724815 bytes, checksum: 95dd68d84a2efe2b8deeabf03163a23a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsFigure Index viii
Table Index ix
I. Introduction 1
1-1 Background 1
1-1.1 Perfluoroalkyl substances 1
1-1.2 Phthalates 2
1-2 Nuclear magnetic resonance (NMR)-based metabolomics 3
1-3 Study aim 5
II. Material and methods 6
2-1 Study population and sample collection 7
2-2 Quantification of PFASs in serum 7
2-3 Quantification of urinary phthalate metabolites 9
2-4 Measurement of serum metabolome by NMR 11
2-5 Statistical analysis 12
III. Results 15
3-1 Characteristics of the study population 15
3-2 Concentration of PFASs and phthalates in children 15
3-3 Associations between exposure levels and children characteristics and their serum metabolome 16
3-4 Critical metabolites suggested by multiple linear regression models 17
3-5 Associations between fourteen exposure levels and each critical metabolite according to multiple linear regression models 19
IV. Discussion 21
4-1 Critical metabolites associated with single selected toxicant exposure 21
4-1.1 Glycoprotein acetyls positively associated with MiBP exposure in TEC 21
4-1.2 Increased VLDL, decreased glutamine and scyllo-inositol associated with DEHP exposure in TBPS 22
4-2 Critical metabolites associate with multiple exposures 25
4-2.1 VLDL level was affected by PFOS, MiBP, PFNA, and DEHP exposure 25
4-2.2 Glutamine level was affected by PFOS, PFNA, and DEHP exposure 27
4-2.3 Scyllo-inositol level was affected by PFNA, MnBP, and DEHP exposure 28
4-3 The association between serum metabolome and PFASs 28
4-4 The influence of gender on serum metabolome 29
4-5 Effects of residential regions 30
4-6 Strengths and limitations 30
4-7 Conclusions 31
References 43
Appendix 51
Table S1 Multiple reaction monitoring (MRM) transitions, collision energy, and linear range of thirteen PFASs and internal standard. 51
Table S2 Relative recovery rate (%) of thirteen PFAS analytes of the spiked samples in pooled human serum (n=5). 52
Table S3 Differences of eight PFASs and six PAEs concentration between TBPS and TEC. 53
Table S4 Metabolite changes between TBPS and TEC. 54
Table S5 Multivariate analysis models demonstrating an association between PFAS and PAE exposure levels and NMR spectral data in TBPS group. 55
Table S6 Multivariate analysis models demonstrating an association between PFAS and PAE exposure levels and NMR spectral data in TEC group. 56
Table S7 Multiple linear regression models on effects of PFUnDA, PFTrDA, MiBP and ΣDEHP exposure on specific metabolites. BMI, residential region, gender, age and income were adjusted. 57
Table S8 Multiple linear regression models on effects of fourteen exposures on specific metabolites. BMI, residential region, gender, age and income were adjusted. 58
Figure S1 Expansion of 1H-13C HSQC spectra of children serum highlighting the resonance assignments in the region 3-3.8 ppm. 59
dc.language.isoen
dc.title應用核磁共振氫譜技術探討孩童代謝體特徵與全氟碳化物及鄰苯二甲酸酯類之環境暴露之關聯研究zh_TW
dc.titleAssociation of Metabolic Profiles with Environmental Exposure to Perfluoroalkyl Substances and Phthalates in Children Revealed by 1H-NMR Spectroscopyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳保中(Pau-Chung Chen)
dc.contributor.oralexamcommittee莊淳宇(Chun-Yu Chuang),林菀俞(Wan-Yu Lin),唐川禾(Chuan-Ho Tang)
dc.subject.keyword全氟碳化物,鄰苯二甲酸酯類,代謝體學,孩童,zh_TW
dc.subject.keywordPerfluoroalkyl substances,phthalates,metabolomics,children,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201602708
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved