Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳顥齡
dc.contributor.authorSzu-Yu Linen
dc.contributor.author林思瑜zh_TW
dc.date.accessioned2021-06-15T11:40:08Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationAbd El-Kafy, E. M., Elshemy, S. A., & Alghamdi, M. S. (2014). Effect of constraint-induced therapy on upper limb functions: a randomized control trial. Scandinavian Journal of Occupational Therapy, 21(1), 11-23. doi: 10.3109/11038128.2013.837505
Andersen, J. C., Majnemer, A., O'Grady, K., & Gordon, A. M. (2013). Intensive upper extremity training for children with hemiplegia: from science to practice. Seminars in Pediatric Neurology, 20(2), 100-105. doi: 10.1016/j.spen.2013.06.001
Andre, J. M., Didier, J. P., & Paysant, J. (2004). 'Functional motor amnesia' in stroke (1904) and 'learned non-use phenomenon' (1966). Journal of Rehabilitation Medicine, 36(3), 138-140.
Arnould, C., Penta, M., Renders, A., & Thonnard, J. L. (2004). ABILHAND-Kids: a measure of manual ability in children with cerebral palsy. Neurology, 63(6), 1045-1052.
Bax, M., Goldstein, M., Rosenbaum, P., Leviton, A., Paneth, N., Dan, B., . . . Damiano, D. (2005). Proposed definition and classification of cerebral palsy, April 2005. Developmental Medicine & Child Neurology, 47(08), 571-576.
Bhardwaj, P., & Sabapathy, S. R. (2011). Assessment of the hand in cerebral palsy. Indian journal of plastic surgery: official publication of the Association of Plastic Surgeons of India, 44(2), 348.
Blair, E., & Watson, L. (2006). Epidemiology of cerebral palsy. Paper presented at the Seminars in Fetal and Neonatal Medicine.
Bryanton, C., Bosse, J., Brien, M., McLean, J., McCormick, A., & Sveistrup, H. (2006). Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. CyberPsychology & Behavior, 9(2), 123-128. doi: 10.1089/cpb.2006.9.123
Butler, E. E., Ladd, A. L., Louie, S. A., LaMont, L. E., Wong, W., & Rose, J. (2010). Three-dimensional kinematics of the upper limb during a Reach and Grasp Cycle for children. Gait Posture, 32(1), 72-77.
Chen, C.-l., Kang, L.-j., Hong, W.-H., Chen, F.-C., Chen, H.-C., & Wu, C.-y. (2013). Effect of therapist-based constraint-induced therapy at home on motor control, motor performance and daily function in children with cerebral palsy: a randomized controlled study. Clinical Rehabilitation, 27(3), 236-245.
Chen, H. C., Chen, C. L., Kang, L. J., Wu, C. Y., Chen, F. C., & Hong, W. H. (2014). Improvement of upper extremity motor control and function after home-based constraint induced therapy in children with unilateral cerebral palsy: immediate and long-term effects. Archives of Physical Medicine and Rehabilitation, 95(8), 1423-1432. doi: 10.1016/j.apmr.2014.03.025
Chen, H. C., Kang, L. J., Chen, C. L., Lin, K. C., Chen, F. C., & Wu, K. P. (2015). Younger Children with Cerebral Palsy Respond Better Than Older Ones to Therapist-Based Constraint-Induced Therapy at Home on Functional Outcomes and Motor Control. Physical & Occupational Therapy in Pediatrics, 1-14. doi: 10.3109/01942638.2015.1101042
Chen, J. L., Fujii, S., & Schlaug, G. (2015). The use of augmented auditory feedback to improve arm reaching in stroke: a case series. Disability and Rehabilitation, 1-10. doi: 10.3109/09638288.2015.1076530
Chen, Y., Garcia-Vergara, S., & Howard, A. M. (2015). Effect of a Home-Based Virtual Reality Intervention for Children with Cerebral Palsy Using Super Pop VR Evaluation Metrics: A Feasibility Study. Rehabilitation Research and Practice, 2015, 812348. doi: 10.1155/2015/812348
Chen, Y. P., Lee, S. Y., & Howard, A. M. (2014). Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatric Physical Therapy, 26(3), 289-300. doi: 10.1097/pep.0000000000000046
Chen, Y. P., Pope, S., Tyler, D., & Warren, G. L. (2014). Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Clinical Rehabilitation, 28(10), 939-953. doi: 10.1177/0269215514544982
Chiu, H. C., Ada, L., & Lee, H. M. (2014). Upper limb training using Wii Sports Resort for children with hemiplegic cerebral palsy: a randomized, single-blind trial. Clinical Rehabilitation, 28(10), 1015-1024. doi: 10.1177/0269215514533709
Choudhary, A., Gulati, S., Kabra, M., Singh, U. P., Sankhyan, N., Pandey, R. M., & Kalra, V. (2013). Efficacy of modified constraint induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: A randomized controlled trial. Brain and Development, 35(9), 870-876.
Da Gama, A., Fallavollita, P., Teichrieb, V., & Navab, N. (2015). Motor Rehabilitation Using Kinect: A Systematic Review. Games for Health Journal, 4(2), 123-135. doi: 10.1089/g4h.2014.0047
DeLuca, S. C., Case-Smith, J., Stevenson, R., & Ramey, S. L. (2011). Constraint-induced movement therapy (CIMT) for young children with cerebral palsy: effects of therapeutic dosage. Journal of pediatric rehabilitation medicine, 5(2), 133-142.
Deutsch, J. E., Borbely, M., Filler, J., Huhn, K., & Guarrera-Bowlby, P. (2008). Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy, 88(10), 1196-1207.
Eliasson, A.-C., Bonnier, B., & Krumlinde-Sundholm, L. (2003). Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy–a day camp model. Developmental Medicine & Child Neurology, 45(05), 357-360.
Eliasson, A. C., Krumlinde-Sundholm, L., Gordon, A. M., Feys, H., Klingels, K., Aarts, P. B., . . . European network for Health Technology, A. (2014). Guidelines for future research in constraint-induced movement therapy for children with unilateral cerebral palsy: an expert consensus. Developmental Medicine & Child Neurology, 56(2), 125-137. doi: 10.1111/dmcn.12273
Eliasson, A. C., Sundholm, L. K., Shaw, K., & Wang, C. (2005). Effects of constraint‐induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Developmental Medicine & Child Neurology, 47(4), 266-275.
Eyre, J. A., Smith, M., Dabydeen, L., Clowry, G. J., Petacchi, E., Battini, R., . . . Cioni, G. (2007). Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Annals of neurology, 62(5), 493-503.
Fasoli, S. E., Trombly, C. A., Tickle-Degnen, L., & Verfaellie, M. H. (2002). Effect of instructions on functional reach in persons with and without cerebrovascular accident. The American journal of occupational therapy, 56(4), 380-390.
Galvin, J., & Levac, D. (2011). Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: Describing and classifying virtual reality systems. Developmental Neurorehabilitation, 14(2), 112-122.
Gatica-Rojas, V., & Mendez-Rebolledo, G. (2014). Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases. Neural Regeneration Research, 9(8), 888-896. doi: 10.4103/1673-5374.131612
Geerdink, Y., Aarts, P., van der Burg, J., Steenbergen, B., & Geurts, A. (2015). Intensive upper limb intervention with self-management training is feasible and promising for older children and adolescents with unilateral cerebral palsy. Research in Developmental Disabilities, 43-44, 97-105. doi: 10.1016/j.ridd.2015.06.013
Gilmore, R., Ziviani, J., Sakzewski, L., Shields, N., & Boyd, R. (2010). A balancing act: children's experience of modified constraint-induced movement therapy. Developmental Neurorehabilitation, 13(2), 88-94. doi: 10.3109/17518420903386161
Glegg, S. M., Tatla, S. K., & Holsti, L. (2014). The GestureTek virtual reality system in rehabilitation: a scoping review. Disability and Rehabilitation: Assistive Technology, 9(2), 89-111.
Gordon, A. M., Charles, J., & Wolf, S. L. (2005). Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Archives of Physical Medicine and Rehabilitation, 86(4), 837-844.
Gordon, A. M., Charles, J., & Wolf, S. L. (2006). Efficacy of constraint-induced movement therapy on involved upper-extremity use in children with hemiplegic cerebral palsy is not age-dependent. Pediatrics, 117(3), e363-373. doi: 10.1542/peds.2005-1009
Green, D., & Wilson, P. H. (2011). Validation of the Elements/RE-ACTION System for use with children: evaluation of performance across developmental stages. Paper presented at the 2011 International Conference on Virtual Rehabilitation.
Harrison, A. (1977). Augmented feedback training of motor control in cerebral palsy. Developmental Medicine & Child Neurology, 19(1), 75-78.
Hart, H. (2005). Can constraint therapy be developmentally appropriate and child-friendly? Developmental Medicine & Child Neurology, 47(6), 363.
Hemayattalab, R., & Rostami, L. R. (2010). Effects of frequency of feedback on the learning of motor skill in individuals with cerebral palsy. Research in developmental disabilities, 31(1), 212-217.
Himmelmann, K., Hagberg, G., Beckung, E., Hagberg, B., & Uvebrant, P. (2005). The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth‐year period 1995–1998. Acta Paediatrica, 94(3), 287-294.
Hoare, B., Imms, C., Carey, L., & Wasiak, J. (2007). Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy: a Cochrane systematic review. Clinical Rehabilitation, 21(8), 675-685.
Houwink, A., Aarts, P. B., Geurts, A. C., & Steenbergen, B. (2011). A neurocognitive perspective on developmental disregard in children with hemiplegic cerebral palsy. Research in Developmental Disabilities, 32(6), 2157-2163. doi: 10.1016/j.ridd.2011.07.012
Houwink, A., Geerdink, Y. A., Steenbergen, B., Geurts, A. C., & Aarts, P. B. (2013). Assessment of upper-limb capacity, performance, and developmental disregard in children with cerebral palsy: validity and reliability of the revised Video-Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA-DDD-R). Developmental Medicine & Child Neurology, 55(1), 76-82. doi: 10.1111/j.1469-8749.2012.04442.x
Hurkmans, H. L., van den Berg-Emons, R. J., & Stam, H. J. (2010). Energy expenditure in adults with cerebral palsy playing Wii Sports. Archives of Physical Medicine and Rehabilitation, 91(10), 1577-1581.
Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbelien, E., . . . Feys, H. (2011). Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Research in Developmental Disabilities, 32(6), 2283-2294. doi: 10.1016/j.ridd.2011.07.038
Jaspers, E., Feys, H., Bruyninckx, H., Cutti, A., Harlaar, J., Molenaers, G., & Desloovere, K. (2011). The reliability of upper limb kinematics in children with hemiplegic cerebral palsy. Gait Posture, 33(4), 568-575.
Klingels, K., Feys, H., Molenaers, G., Verbeke, G., Van Daele, S., Hoskens, J., . . . De Cock, P. (2013). Randomized trial of modified constraint-induced movement therapy with and without an intensive therapy program in children with unilateral cerebral palsy. Neurorehabil Neural Repair, 27(9), 799-807. doi: 10.1177/1545968313496322
Klingels, K., Feys, H., Molenaers, G., Verbeke, G., Van Daele, S., Hoskens, J., . . . De Cock, P. (2013). Randomized trial of modified constraint-induced movement therapy with and without an intensive therapy program in children with unilateral cerebral palsy. Neurorehabil Neural Repair, 27(9), 799-807.
Kuhtz-Buschbeck, J. P., Krumlinde Sundholm, L., Eliasson, A.-C., & Forssberg, H. (2000). Quantitative assessment of mirror movements in children and adolescents with hemiplegic cerebral palsy. Developmental Medicine & Child Neurology, 42(11), 728-736.
Law, K., Lee, E. Y., Fung, B. K., Yan, L. S., Gudushauri, P., Wang, K. W., . . . Chow, S. P. (2008). Evaluation of deformity and hand function in cerebral palsy patients. Journal of orthopaedic surgery and research, 3(1), 52.
Lee, T. D., Wulf, G., & Schmidt, R. A. (1992). Contextual Interference in Motor Learning: Dissociated Effects Due to the Nature of Task Variations. The Quarterly Journal of Experimental Psychology Section A, 44(4), 627-644. doi: 10.1080/14640749208401303
Luna-Oliva, L., Ortiz-Gutierrez, R. M., Cano-de la Cuerda, R., Piedrola, R. M., Alguacil-Diego, I. M., Sanchez-Camarero, C., & Martinez Culebras Mdel, C. (2013). Kinect Xbox 360 as a therapeutic modality for children with cerebral palsy in a school environment: a preliminary study. NeuroRehabilitation, 33(4), 513-521. doi: 10.3233/nre-131001
Mackey, A. H., Walt, S. E., & Stott, N. S. (2006). Deficits in upper-limb task performance in children with hemiplegic cerebral palsy as defined by 3-dimensional kinematics. Archives of Physical Medicine and Rehabilitation, 87(2), 207-215.
Magdalon, E. C., Michaelsen, S. M., Quevedo, A. A., & Levin, M. F. (2011). Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychologica, 138(1), 126-134. doi: 10.1016/j.actpsy.2011.05.015
Mancini, M. C., Brandao, M. B., Dupin, A., Drummond, A. F., Chagas, P. S., & Assis, M. G. (2013). How do children and caregivers perceive their experience of undergoing the CIMT protocol? Scandinavian Journal of Occupational Therapy, 20(5), 343-348. doi: 10.3109/11038128.2013.799227
Matijevic, V., Secic, A., Masic, V., Sunic, M., Kolak, Z., & Znika, M. (2013). Virtual reality in rehabilitation and therapy. Acta Clin Croat, 52(4), 453-457.
Meira, C. M., Jr., Fairbrother, J. T., & Perez, C. R. (2015). Contextual Interference and Introversion/Extraversion in Motor Learning. Perceptual and motor skills, 121(2), 447-460. doi: 10.2466/23.PMS.121c20x6
Monge Pereira, E., Molina Rueda, F., Alguacil Diego, I., Cano De La Cuerda, R., De Mauro, A., & Miangolarra Page, J. (2014). Use of virtual reality systems as proprioception method in cerebral palsy: clinical practice guideline., 29(9), 550-559.
Morris, D., Taub, E., & Mark, V. (2006). Constraint-induced movement therapy: characterizing the intervention protocol. Europa medicophysica, 42(3), 257.
Morris, D. M., & Taub, E. (2001). Constraint-induced therapy approach to restoring function after neurological injury. Topics in stroke rehabilitation, 8(3), 16-30.
Nass, R. (1985). Mirror movement asymmetries in congenita1 hemiparesis The inhibition hypothesis revisited. Neurology, 35(7), 1059-1059.
Ni, L. T., Fehlings, D., & Biddiss, E. (2014). Design and Evaluation of Virtual Reality-Based Therapy Games with Dual Focus on Therapeutic Relevance and User Experience for Children with Cerebral Palsy. Games for Health Journal, 3(3), 162-171. doi: 10.1089/g4h.2014.0003
Ogden, R., & Franz, S. I. (1917). On cerebral motor control: The recovery from experimentally produced hemiplegia. Psychobiology, 1(1), 33.
Pagliari, D., & Pinto, L. (2015). Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors. Sensors (Basel), 15(11), 27569-27589. doi: 10.3390/s151127569
Pastor, I., Hayes, H. A., & Bamberg, S. J. (2012). A feasibility study of an upper limb rehabilitation system using Kinect and computer games. Conf Proc IEEE Eng Med Biol Soc, 2012, 1286-1289. doi: 10.1109/embc.2012.6346173
Porter, J. M., & Magill, R. A. (2010). Systematically increasing contextual interference is beneficial for learning sport skills. Journal of Sports Sciences, 28(12), 1277-1285. doi: 10.1080/02640414.2010.502946
Ricken, A. X., Bennett, S. J., & Savelsbergh, G. J. (2005). Coordination of reaching in children with spastic hemiparetic cerebral palsy under different task demands. MOTOR CONTROL-CHAMPAIGN-, 9(4), 357.
Sakzewski, L. (2012). Bimanual therapy and constraint-induced movement therapy are equally effective in improving hand function in children with congenital hemiplegia. Journal of Physiotherapy, 58(1), 59. doi: 10.1016/s1836-9553(12)70075-9
Sakzewski, L., Gordon, A., & Eliasson, A. C. (2014). The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. Journal of Child Neurology, 29(8), 1077-1090. doi: 10.1177/0883073814533150
Sakzewski, L., Ziviani, J., & Boyd, R. (2009). Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics, 123(6), e1111-e1122.
Sakzewski, L., Ziviani, J., & Boyd, R. N. (2013). Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics, peds. 2013-0675.
Sakzewski, L., Ziviani, J., & Boyd, R. N. (2014). Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics, 133(1), e175-204. doi: 10.1542/peds.2013-0675
Sandlund, M., Waterworth, E. L., & Hager, C. (2011). Using motion interactive games to promote physical activity and enhance motor performance in children with cerebral palsy. Developmental Neurorehabilitation, 14(1), 15-21. doi: 10.3109/17518423.2010.533329
Schneiberg, S., McKinley, P., Gisel, E., Sveistrup, H., & Levin, M. F. (2010). Reliability of kinematic measures of functional reaching in children with cerebral palsy. Developmental Medicine & Child Neurology, 52(7), e167-e173.
Schneiberg, S., Mckinley, P. A., Sveistrup, H., Gisel, E., Mayo, N. E., & Levin, M. F. (2010). The effectiveness of task‐oriented intervention and trunk restraint on upper limb movement quality in children with cerebral palsy. Developmental Medicine & Child Neurology, 52(11), e245-e253.
Scholtes, V. A., Becher, J. G., Beelen, A., & Lankhorst, G. J. (2006). Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Developmental Medicine & Child Neurology, 48(1), 64-73.
Sim, G., & Cassidy, B. (2013). Investigating the fidelity effect when evaluating game prototypes with children. Paper presented at the Proceedings of the 27th International BCS Human Computer Interaction Conference.
Snider, L., Majnemer, A., & Darsaklis, V. (2010). Virtual reality as a therapeutic modality for children with cerebral palsy. Developmental Neurorehabilitation, 13(2), 120-128.
Swan, J. E., 2nd, Singh, G., & Ellis, S. R. (2015). Matching and reaching depth judgments with real and augmented reality targets. IEEE Trans Vis Comput Graph, 21(11), 1289-1298. doi: 10.1109/tvcg.2015.2459895
Taub, E. (1976). Movement in nonhuman primates deprived of somatosensory feedback. Exercise and Sport Sciences Reviews, 4, 335-374.
Taub, E., Griffin, A., Uswatte, G., Gammons, K., Nick, J., & Law, C. R. (2011). Treatment of congenital hemiparesis with pediatric constraint-induced movement therapy. Journal of Child Neurology, 26(9), 1163-1173.
Thompson, A. M., Chow, S., Vey, C., & Lloyd, M. (2015). Constraint-induced movement therapy in children aged 5 to 9 years with cerebral palsy: a day camp model. Pediatric Physical Therapy, 27(1), 72-80. doi: 10.1097/pep.0000000000000111
Timmermans, A. A., Spooren, A. I., Kingma, H., & Seelen, H. A. (2010). Influence of task-oriented training content on skilled arm-hand performance in stroke: a systematic review. Neurorehabilitation and Neural Repair, 24(9), 858-870. doi: 10.1177/1545968310368963
Uswatte, G., Taub, E., Griffin, A., Vogtle, L., Rowe, J., & Barman, J. (2012). The pediatric motor activity log-revised: assessing real-world arm use in children with cerebral palsy. Rehabilitation Psychology, 57(2), 149-158. doi: 10.1037/a0028516
Vinas-Diz, S., & Sobrido-Prieto, M. (2015). Virtual reality for therapeutic purposes in stroke: A systematic review. Neurologia. doi: 10.1016/j.nrl.2015.06.012
Wallen, M., Ziviani, J., Herbert, R., Evans, R., & Novak, I. (2008). Modified constraint-induced therapy for children with hemiplegic cerebral palsy: a feasibility study. Developmental Neurorehabilitation, 11(2), 124-133.
Weiss, P. L., Rand, D., Katz, N., & Kizony, R. (2004). Video capture virtual reality as a flexible and effective rehabilitation tool. Journal of NeuroEngineering and Rehabilitation, 1(1), 12.
Winkels, D. G., Kottink, A. I., Temmink, R. A., Nijlant, J. M., & Buurke, J. H. (2013). Wii-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Developmental Neurorehabilitation, 16(1), 44-51. doi: 10.3109/17518423.2012.713401
Wu, G., Van der Helm, F. C., Veeger, H. D., Makhsous, M., Van Roy, P., Anglin, C., . . . Wang, X. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981-992.
Wulf, G. (2007). Attentional focus and motor learning: A review of 10 years of research. E-journal Bewegung und Training, 1(2-3), 1-11.
Yeh, C.-F. (2015). Effects of External Task difficulty on Arm-Trunk Movement during a Reach-to-Grasp in Children with Hemiplegic Cerebral Palsy. (Master degree), National Taiwan University. (98)
Zoccolillo, L., Morelli, D., Cincotti, F., Muzzioli, L., Gobbetti, T., Paolucci, S., & Iosa, M. (2015). Video-game based therapy performed by children with cerebral palsy: a cross-over randomized controlled trial and a cross-sectional quantitative measure of physical activity. European Journal of Physical and Rehabilitation Medicine.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49655-
dc.description.abstract背景
腦性麻痺為最常見造成孩童生理失能的原因,而腦性麻痺孩童常有上肢動作功能缺失,這些上肢功能缺失會進而影響孩童的日常生活參與及獨立性。侷限誘發療法是近代備受矚目且有效的上肢介入方式,並已被證實能有效改善腦性麻痺孩童的上肢動作功能及提升日常生活表現,然而此治療方法常會引起孩童的挫折進而缺乏治療參與動機。近年來有許多新興的治療方法,包含使用虛擬實境系統作為治療的媒介,並已被廣泛運用在復健治療中,然而使用虛擬實境之療效研究結果仍不太一致。因此本研究目的為開發一套為腦性麻痺孩童所設計的有趣並具療效之單側上肢體感動作訓練系統,同時驗證其可行性及療效。
方法
本單側上肢體感動作訓練系統之設計重點主要是奠基於侷限誘發療法的原則,同時結合動作學習理論之概念,並以Kinect作為遊戲平台而設計。本研究共分成兩個部分,分別為:驗證所開發的體感動作訓練系統之可行性,以及了解其療效。第一部份的可行性研究,共有10位半側偏癱腦型麻痺孩童參與此研究,所有孩童會接受20分鐘的遊戲測試,在遊戲過程中會同時使用六台紅外線高速攝影機記錄孩童的上肢各關節之活動角度,實驗結束後會經由問卷與訪談的方式探討孩童接受體感動作訓練系統的使用者經驗。除此之外,為瞭解實際介入的可行性,共收了5位腦性麻痺孩童進行36小時的體感復健訓練系統之介入,記錄孩童在治療過程中體感訓練系統記錄每次介入之遊戲參數。第二部分的療效研究,共納入10位年齡介於5~12歲之腦性麻痺孩童,並將孩童隨機分派至一般侷限誘發療法組以及體感侷限誘發療法組。所有孩童皆接受每次2~2.5小時,每周2~3次,為期8周的居家治療。為瞭解治療效果,所有孩童在治療前及八周治療後,皆會接受運動學以及功能性評估工具之評估。
結果
在20分鐘的可行性研究結果顯示,本研究所設計的體感復健訓練系統確實提供腦性麻痺孩童一新型態的復健訓練方式,能提升孩童患側上肢的使用量,綜合問卷與訪談的結果,所有孩童都覺得遊戲過程中的氛圍很快樂且認為此復健訓練方式很有趣並感到很安全。而在36小時的可行性研究結果顯示,所有孩童經由體感復健訓練系統介入後,都能有效提升遊戲中的動作成功率以及平均完成的時間。而將體感復健訓練系統之療效和一般侷限誘發療法相比,孩童接受體感復健訓練系統之介入,能較有效改善患側上肢的動作時間及動作計畫;而孩童接受一般侷限誘發療法之介入,則較能提升患側上肢的最大速度以及雙側協調的表現。
結論
上述結果支持此上肢復健體感訓練系統為可行且具安全性的訓練方案,可提升腦性麻痺孩童的復健參與動機,同時提供密集的動作訓練。所有孩童在八周的介入後,皆能有效提升其上肢動作功能。其中,孩童接受體感復健訓練系統之介入,能較有效的提升其患側手的動作表現;而在一般侷限誘發療法組之孩童,則較能將治療過程中所獲得類化到雙手協調。總結而言,此上肢復健體感系統不僅能提升孩童的動機並能有效提升孩童上肢動作表現,也能減少治療師的負擔,因此是一個較可行的侷限誘發療法之新興方案。
zh_TW
dc.description.abstractCerebral Palsy (CP), a common cause of physical disability in children, often impairs upper extremity (UE) function, which limits children’s participation in activities of daily living and independence. Recently, constraint-induced therapy (CIT) is one of the effective approaches to improve UE function. However, children often feel demotivated during this therapy. Virtual reality (VR) has been confirmed to improve this disadvantage and widely been used for rehabilitation. However, the effectiveness of VR system is still controversial. VR system combining with effective rehabilitation approach, such as CIT, may be a feasible approach for designing cost-effective motor rehabilitation program for children with CP. Thus, this study was aim to: (1) develop a Kinect-based CIT and to evaluate its feasibility and safety; (2) evaluate the effectiveness of Kinect-based CIT.
Kinect-based CIT was developed by the principle of CIT, which emphasize on restraining the less affect UE and intensive, repetitive training of the more affected UE. Moreover, the components of motor learning would be considered to design the training protocol.
In this study, we conducted two experiments. One was to valid the feasibility of Kinect-based CIT and the other was to confirm the effectiveness of this program for children with CP. In feasibility study, 10 children with hemiplegic CP (HCP) were enrolled. Children played the game for 20 minutes and range of motion (ROM) of shoulder, elbow, wrist and trunk were evaluated. After the gameplay, children completed a questionnaire of their gameplay experience. In addition, we examined the game recorded variables to evaluate the gameplay performance of 16-session-intervention. In effectiveness study, 10 children with CP, aged from 5-12 years old, were recruited in this study. Children were randomly assigned to Kinect-based CIT group or home-based CIT group. All the participants received the same treatment duration: 2-2.5 hours/ day, 2-3 days/ week, for 8 weeks. To evaluate the treatment effects, all children underwent kinematic analysis of unimanual and bimanual reaching tasks and functional outcome measures for activities of daily living before and immediately after the intervention.
In feasibility study of 20-minutes gameplay, all of the children increased the amount of use of their more affected limb and reported an enjoyable and safe experience during gameplay. Moreover, in feasibility study of 36-hours gameplay, the output data of two games showed that successful rate and average completed time would improve over time. In preliminary effectiveness study, children with CP in both groups had improvements in UE motor functions. Comparing to Home-based CIT group, Kinect-based CIT group had more improvements in movement time of their more affected UE and better motor planning. Home-based CIT group improved more in peak velocity and bilateral coordination.
In conclusions, our developed Kinect-based CIT was a feasible motor rehabilitation program for children with CP. Kinect-based CIT group had greater improvements in motor performance of their more affected UE. Home-based CIT group improved more in bilateral coordination. In brief, these two kinds of therapy were both effective to improve motor performance in children with CP. However, the Kinect-based CIT could also enhance motivation of children and decrease load of therapists. Thus, this program was more feasible to apply in clinic or home.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:08Z (GMT). No. of bitstreams: 1
ntu-105-R03429006-1.pdf: 5106037 bytes, checksum: a852352a4cf84d9d1d0b39c97de27cd1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Table of Contents vii
List of Figures x
List of Tables xi
Chapter 1 Introduction 1
1.1 Cerebral palsy 2
1.1.2 Upper limb motor deficit 2
1.1.2 Developmental disregard 3
1.2 Constraint-induced therapy (CIT) 5
1.2.1 Principles of CIT 5
1.2.2 Protocols of CIT 6
1.2.3 Effects of CIT 8
1.2.4 Limitations of CIT 9
1.3 Virtual reality 10
1.3.1 VR for rehabilitation in children with CP 11
1.3.2 Rehabilitation using Kinect system in children with CP 13
1.4 Knowledge gaps 15
1.5 Purposes 15
1.5.1 Hypotheses 16
Chapter 2 Methods 17
2.1 Game development 17
2.1.1 Systems 17
2.1.2 Game scenario 17
2.1.3 Principle of the game 18
2.1.4 Elements of motor leaning 19
2.1.5 Motor training goals 21
2.1.6 Personalized evaluation 22
2.1.7 Grading 23
2.1.8 User interface 24
2.2 Feasibility study 25
2.2.1 The effect in first 20-minutes gameplay 26
2.2.2 The effect in 36-hours gameplay 27
2.3 Effectiveness evaluation 28
2.3.1 Participants 28
2.3.2 Study design 29
2.3.3 Interventions 30
2.3.4 kinematic outcomes 31
2.3.5 Statistical analysis 35
Chapter 3 Results 37
3.1 Feasibility study 37
3.1.1 The effect in first 20-minute gameplay 37
3.1.2 The effect in 36-hour gameplay 38
3.2 Preliminary RCT study 39
3.2.1 Demographic data 39
3.2.2 Kinematic data 40
3.2.3 Functional outcome 40
Chapter 4 Discussion 42
4.1 Feasibility study 42
4.1.1 The effect in first 20-minute gameplay 43
4.1.2 The effect in 36-hours gameplay 45
4.2 Preliminary RCT study 48
4.2.1 Kinematic results 48
4.2.2 Functional results 50
4.3 Study limitation and future work 51
Chapter 5 Conclusions and Clinical Implication 52
References 53
List of Figures
Figure 1 The game flow of two games…………………………………….62
Figure 2 The user interface of two game. 62
Figure 3 The questionnaire of the gameplay experience. 63
Figure 4 The task conditions 64
Figure 5 The locations of the infrared retro-reflective markers. 65
Figure 6 Trend chart of output variables of each session in “Adventure Island” game 66
Figure 7 Trend chart of output variables of each session in “Kitten Island” game 67
Figure 8 Trend chart of the total scores in Engagement Questionnaire 68
List of Tables
Table 1 Order and description of game levels in “Adventure Island”. 69
Table 2 Order and description of game levels in “Kitten Island”. 69
Table 3 Demographic data of participants in 20-minute feasibility study. 70
Table 4 Results of the range of motion while playing the game. 71
Table 5 Results of the questionnaire of game play. 72
Table 6 Demographic data of participants in 36-hours feasibility study. 73
Table 7 Demographic data of participants in Preliminary RCT study. 74
Table 8 Results of endpoint control in unilateral condition. 75
Table 9 Results of joint kinematics in unilateral condition..........................76
Table 10 Results of kinematic variables in bilateral condition. 78
Table 11 Results of functional outcomes. 79
dc.language.isoen
dc.subject虛擬實境zh_TW
dc.subject腦性麻痺zh_TW
dc.subject侷限誘發療法zh_TW
dc.subjectCerebral Palsyen
dc.subjectConstraint-induced Therapyen
dc.subjectVirtual Realityen
dc.title腦性麻痺孩童單側上肢體感動作訓練系統之發展與療效評估:侷限誘發療法之創新方案zh_TW
dc.titleDevelopment and Effectiveness of a Kinect-based Motor Training System for Children with Cerebral Palsyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王湉妮,林克忠,成戎珠,謝正宜
dc.subject.keyword腦性麻痺,侷限誘發療法,虛擬實境,zh_TW
dc.subject.keywordCerebral Palsy,Constraint-induced Therapy,Virtual Reality,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201602610
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved