Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孝文(Hsiao-Wen Chung)
dc.contributor.authorShih-Wei Chiangen
dc.contributor.author蔣詩偉zh_TW
dc.date.accessioned2021-06-15T11:40:00Z-
dc.date.available2023-12-31
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation[1] Global, K. D. I. (2017). 'Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) (vol 7, pg 1, 2017).' Kidney International Supplements 7(3): E1-E1.
[2] Bardin, T. (2003). 'Musculoskeletal manifestations of chronic renal failure.' Current Opinion in Rheumatology 15(1): 48-54.
[3] Kay, J. and T. Bardin (2000). 'Osteoarticular disorders of renal origin: disease-related and iatrogenic.' Best Practice Research in Clinical Rheumatology 14(2): 285-305.
[4] Kart-Koseoglu, H., et al. (2005). 'Osteoarthritis in hemodialysis patients: relationships with bone mineral density and other clinical and laboratory parameters.' Rheumatology International 25(4): 270-275.
[5] Punzi, L., et al. (2004). 'Erosive osteoarthritis.' Best Pract Res Clin Rheumatol 18(5): 739-758.
[6] Panichi, V., et al. (2010). 'Impact of calcium, phosphate, PTH abnormalities and management on mortality in hemodialysis: results from the RISCAVID study.' J Nephrol 23(5): 556-562.
[7] Yamamoto, S., et al. (2008). 'Patients undergoing dialysis therapy for 30 years or more survive with serious osteoarticular disorders.' Clin Nephrol 70(6): 496-502.
[8] Menaa, C., et al. (2008). 'Beta2-microglobulin stimulates osteoclast formation.' Kidney Int 73(11): 1275-1281.
[9] Yamamoto, S., et al. (2009). 'Recent progress in understanding dialysis-related amyloidosis.' Bone 45 Suppl 1: S39-42.
[10] Floege, J. and M. Ketteler (2001). 'beta2-microglobulin-derived amyloidosis: an update.' Kidney Int Suppl 78: S164-171.
[11] Kaneko, M., et al. (2001). 'Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis.' Rheumatology (Oxford) 40(3): 247-255.
[12] Sherrard, D. J., et al. (1993). 'The spectrum of bone disease in end-stage renal failure--an evolving disorder.' Kidney Int 43(2): 436-442.
[13] Shapiro, R. (1972). 'Radiologic aspects of renal osteodystrophy.' Radiol Clin North Am 10(3): 557-568.
[14] Reginato, A. J., et al. (1999). 'Musculoskeletal manifestations of osteomalacia: report of 26 cases and literature review.' Semin Arthritis Rheum 28(5): 287-304.
[15] Murphey, M. D., et al. (1993). 'Musculoskeletal manifestations of chronic renal insufficiency.' Radiographics 13(2): 357-379.
[16] Mankin, H. J. (1990). 'Rickets, osteomalacia, and renal osteodystrophy. An update.' Orthop Clin North Am 21(1): 81-96.
[17] Mankin, H. J. (1974). 'Rickets, osteomalacia, and renal osteodystrophy. Part II.' J Bone Joint Surg Am 56(2): 352-386.
[18] Mosher, T. J., et al. (2000). 'Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T.' Radiology 214(1): 259-266.
[19] Koff, M. F., et al. (2007). 'Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis.' Osteoarthritis Cartilage 15(2): 198-204.
[20] Van Breuseghem, I., et al. (2004). 'T2 mapping of human femorotibial cartilage with turbo mixed MR imaging at 1.5 T: feasibility.' Radiology 233(2): 609-614.
[21] Watrin-Pinzano, A., et al. (2005). 'Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage.' Radiology 234(1): 162-170.
[22] Chou, M. C., et al. (2009). 'Correlation between the MR T2 value at 4.7 T and relative water content in articular cartilage in experimental osteoarthritis induced by ACL transection.' Osteoarthritis Cartilage 17(4): 441-447.
[23] Mosher, T. J. and B. J. Dardzinski (2004). 'Cartilage MRI T2 relaxation time mapping: overview and applications.' Semin Musculoskelet Radiol 8(4): 355-368.
[24] Zhang, W., et al. (2014). 'Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration.' Eur Spine J 23(9): 1830-1836.
[25] Resorlu, M., et al. (2015). 'Association between apparent diffusion coefficient and intervertebral disc degeneration in patients with ankylosing spondylitis.' Int J Clin Exp Med 8(1): 1241-1246.
[26] Ukai, T., et al. (2015). 'Diffusion tensor imaging can detect the early stages of cartilage damage: a comparison study.' BMC Musculoskelet Disord 16: 35.
[27] Bao, S., et al. (1999). 'Spin-Echo planar spectroscopic imaging for fast lipid characterization in bone marrow.' Magn Reson Imaging 17(8): 1203-1210.
[28] Jensen, K. E. (1992). 'Magnetic resonance imaging and spectroscopy of the bone marrow in vivo--with special attention to the possibilities for tissue characterization in patients with leukemia.' Dan Med Bull 39(5): 369-390.
[29] Amano, Y. and T. Kumazaki (1997). 'Proton MR imaging and spectroscopy evaluation of aplastic anemia: three bone marrow patterns.' J Comput Assist Tomogr 21(2): 286-292.
[30] Griffith, J. F., et al. (2005). 'Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy.' Radiology 236(3): 945-951.
[31] Moorthi, R. N., et al. (2015). 'Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy.' Osteoporos Int 26(6): 1801-1807.
[32] Mulkern, R. V., et al. (1997). 'In vivo bone marrow lipid characterization with line scan Carr-Purcell-Meiboom-Gill proton spectroscopic imaging.' Magn Reson Imaging 15(7): 823-837.
[33] Yeung, D. K., et al. (2005). 'Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study.' J Magn Reson Imaging 22(2): 279-285.
[34] Li, X., et al. (2011). 'Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis.' J Magn Reson Imaging 33(4): 974-979.
[35] Li, X., et al. (2008). 'Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla.' J Magn Reson Imaging 28(2): 453-461.
[36] Chiang, S. W., et al. (2013). 'T2 values of posterior horns of knee menisci in asymptomatic subjects.' PLoS One 8(3): e59769.
[37] Levey, A. S., et al. (1999). 'A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.' Ann Intern Med 130(6): 461-470.
[38] Pai, A., et al. (2008). 'A comparative study at 3 T of sequence dependence of T2 quantitation in the knee.' Magn Reson Imaging 26(9): 1215-1220.
[39] Peterfy, C. G., et al. (1994). ''Magic-angle' phenomenon: a cause of increased signal in the normal lateral meniscus on short-TE MR images of the knee.' AJR Am J Roentgenol 163(1): 149-154.
[40] Bydder, M., et al. (2007). 'The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging.' J Magn Reson Imaging 25(2): 290-300.
[41] Le Bihan, D., et al. (1986). 'MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.' Radiology 161(2): 401-407.
[42] S. Provencher. LcModel and LcMgui user’s manual. Vol.18 2011
[43] Wang, C. Y., et al. (2017). 'Cartilage MRI T2(*) relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease.' Osteoarthritis Cartilage 25(6): 976-985.
[44] Wang, C. Y., et al. (2017). 'Knee subchondral bone perfusion and its relationship to marrow fat and trabeculation on multi-parametric MRI and micro-CT in experimental CKD.' Sci Rep 7(1): 3073.
[45] Li, G. W., et al. (2012). 'MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology.' Eur Radiol 22(4): 923-929.
[46] Li, X., et al. (2011). 'Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis.' J Magn Reson Imaging 33(4): 974-979.
[47] Qi, S., et al. (2012). 'A pilot metabolic profiling study in serum of patients with chronic kidney disease based on (1) H-NMR-spectroscopy.' Clin Transl Sci 5(5): 379-385.
[48] Di Pietro, G., et al. (2016). 'Bone Marrow Lipid Profiles from Peripheral Skeleton as Potential Biomarkers for Osteoporosis: A 1H-MR Spectroscopy Study.' Acad Radiol 23(3): 273-283.
[49] Yu, E. W., et al. (2017). 'Marrow adipose tissue composition in adults with morbid obesity.' Bone 97: 38-42.
[50] Scheller, E. L., et al. (2015). 'Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues.' Nat Commun 6: 7808.
[51] Tavassoli, M., et al. (1977). 'Fatty acid composition of adipose cells in red and yellow marrow: A possible determinant of haematopoietic potential.' Scand J Haematol 18(1): 47-53.
[52] Pagnotti, G. M. and M. Styner (2016). 'Exercise Regulation of Marrow Adipose Tissue.' Front Endocrinol (Lausanne) 7: 94.
[53] Huovinen, V., et al. (2015). 'Bone marrow fat unsaturation in young adults is not affected by present or childhood obesity, but increases with age: A pilot study.' Metabolism 64(11): 1574-1581.
[54] Lundbom, J., et al. (2019). '(1)H-MRS of femoral red and yellow bone marrow fat composition and water content in healthy young men and women at 3 T.' MAGMA 32(5): 591-597.
[55] Pino, A. M. and J. P. Rodriguez (2019). 'Is fatty acid composition of human bone marrow significant to bone health?' Bone 118: 53-61.
[56] Raya, J. G., et al. (2012). 'Articular cartilage: in vivo diffusion-tensor imaging.' Radiology 262(2): 550-559.
[57] Raya, J. G., et al. (2011). 'Change of diffusion tensor imaging parameters in articular cartilage with progressive proteoglycan extraction.' Invest Radiol 46(6): 401-409.
[58] Adams, J. G., et al. (1999). 'Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis.' Clin Radiol 54(8): 502-506.
[59] Englund, M., et al. (2009). 'The role of the meniscus in knee osteoarthritis: a cause or consequence?' Radiol Clin North Am 47(4): 703-712.
[60] Englund, M., et al. (2009). 'The meniscus in knee osteoarthritis.' Rheum Dis Clin North Am 35(3): 579-590.
[61] Taylor, C., et al. (2009). 'Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography.' Magn Reson Imaging 27(6): 779-784.
[62] McAlindon, T. E., et al. (2011). 'Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial.' Osteoarthritis Cartilage 19(4): 399-405.
[63] Krishnan, N., et al. (2007). 'Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration?' Arthritis Rheum 56(5): 1507-1511.
[64] Rauscher, I., et al. (2008). 'Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis.' Radiology 249(2): 591-600.
[65] Zarins, Z. A., et al. (2010). 'Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis.' Osteoarthritis Cartilage 18(11): 1408-1416.
[66] Stehling, C., et al. (2011). 'Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon.' Skeletal Radiol 40(6): 725-735.
[67] Nakano, T., et al. (1997). 'Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus.' J Orthop Res 15(2): 213-220.
[68] Tanaka, T., et al. (1999). 'Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus.' Knee Surg Sports Traumatol Arthrosc 7(2): 75-80.
[69] Tsai, P. H., et al. (2009). 'MR T2 values of the knee menisci in the healthy young population: zonal and sex differences.' Osteoarthritis Cartilage 17(8): 988-994.
[70] McAlinden, A., et al. (2001). 'Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage.' Osteoarthritis Cartilage 9(1): 33-41.
[71] Pauli, C., et al. (2011). 'Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis.' Osteoarthritis Cartilage 19(9): 1132-1141.
[72] Kornick, J., et al. (1990). 'Meniscal abnormalities in the asymptomatic population at MR imaging.' Radiology 177(2): 463-465.
[73] Fukuta, S., et al. (2002). 'Prevalence of abnormal findings in magnetic resonance images of asymptomatic knees.' J Orthop Sci 7(3): 287-291.
[74] Chan, P. S., et al. (1998). 'Identification of the vascular and avascular zones of the human meniscus using magnetic resonance imaging: correlation with histology.' Arthroscopy 14(8): 820-823.
[75] Hauger, O., et al. (2000). 'Characterization of the 'red zone' of knee meniscus: MR imaging and histologic correlation.' Radiology 217(1): 193-200.
[76] Collier, S. and P. Ghosh (1995). 'Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus.' Osteoarthritis Cartilage 3(2): 127-138.
[77] Bursac, P., et al. (2009). 'Influence of donor age on the biomechanical and biochemical properties of human meniscal allografts.' Am J Sports Med 37(5): 884-889.
[78] Setton, L. A., et al. (1999). 'Biomechanical factors in tissue engineered meniscal repair.' Clin Orthop Relat Res(367 Suppl): S254-272.
[79] Weiss, C. B., et al. (1989). 'Non-operative treatment of meniscal tears.' J Bone Joint Surg Am 71(6): 811-822.
[80] Sweigart, M. A. and K. A. Athanasiou (2001). 'Toward tissue engineering of the knee meniscus.' Tissue Eng 7(2): 111-129.
[81] Asahina, S., et al. (1996). 'Arthroscopic meniscal repair in conjunction with anterior cruciate ligament reconstruction: factors affecting the healing rate.' Arthroscopy 12(5): 541-545.
[82] Tenuta, J. J. and R. A. Arciero (1994). 'Arthroscopic evaluation of meniscal repairs. Factors that effect healing.' Am J Sports Med 22(6): 797-802.
[83] Lange, A. K., et al. (2007). 'Degenerative meniscus tears and mobility impairment in women with knee osteoarthritis.' Osteoarthritis Cartilage 15(6): 701-708.
[84] Stone, K. R., et al. (2007). 'Meniscal sizing based on gender, height, and weight.' Arthroscopy 23(5): 503-508.
[85] Yue, B., et al. (2011). 'Gender differences in the knees of Chinese population.' Knee Surg Sports Traumatol Arthrosc 19(1): 80-88.
[86] Kerrigan, D. C., et al. (1998). 'Gender differences in joint biomechanics during walking: normative study in young adults.' Am J Phys Med Rehabil 77(1): 2-7.
[87] Webber, R. J., et al. (1986). 'In vitro cell proliferation and proteoglycan synthesis of rabbit meniscal fibrochondrocytes as a function of age and sex.' Arthritis Rheum 29(8): 1010-1016.
[88] Bear, D. M., et al. (2010). 'Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content.' J Orthop Res 28(4): 546-552.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49653-
dc.description.abstract近年來,在台灣各種原因造成的慢性腎臟病盛行率升高,慢性腎臟病容易造成骨骼關節系統病症如骨折、關節病變等,尤其是發生在脊椎與膝關節,所以了解慢性腎臟病對骨骼關節系統所造成病變的病生理機制非常重要。查詢相關文獻得知,目前僅少量文獻討論關於慢性腎臟病於膝關節軟骨以及軟骨下骨髓腔的變化,既無定量也無系統性地從膝關節結構、功能以及分子等各面向分析。
本研究將建立三個主要目標:第一是使用MR T2值(T2 value)、擴散權重影像(diffusion weighted images, DWI)評估慢性腎臟病患者膝關節軟骨與半月軟骨之損傷情形。第二個目標是使用磁振頻譜(MR spectroscopy, MRS)來分別量測慢性腎臟病患者膝關節軟骨下骨髓腔中水和脂肪成分的含量,並探討膝關節軟骨與骨質的相互關係。第三個目標是比較磁振造影所得之各項量化參數與腎絲球過濾率、骨質密度三者間的關聯性
論文中納入20位腎臟專科醫師評估為第三期到第五期的慢性腎臟病之病患、20位性別年齡配對之健康受試者,包含22位男性以及18位女性,根據美國腎臟基金會所提出的疾病分期標準,慢性腎臟病可以根據患者的腎絲球過濾率(estimated glomerular filtration rate, eGFR)高低區分為一至五期。我們採用MR T2值、ADC值針對組群間(慢性腎臟病與正常受試者兩個組群)所呈現之數值差異性作統計分析比較,在T2圖像(T2 mapping)、ADC圖像(ADC mapping),使用感興趣區(region of interest, ROI)方式針對膝關節軟骨以及半月軟骨的八個區域(內外側股骨髁、脛骨內外側、前角內外側半月板、後角內外側半月板)所得到之各區域性的量化指標來系統性比較兩個群組的差異性。另一方面,使用磁振頻譜在軟骨下骨髓腔採集訊號,透過LC model進行之水和脂肪定量分析。其群組之間的平均值統計差異則用獨立樣本t檢定的統計方法,並觀察對應之傳統血清生化指標、骨質密度的數值與本研究的結果間有無關連性,關連性的檢測以Pearson檢定的統計方法,當P值小於0.05則認為兩個群組之間的影像表現有顯著差異。
本研究結果發現在膝關節軟骨T2圖像的參數中,慢性腎臟病之男性外側股骨髁之T2值有顯著增加(P = 0.02),其中脛骨內側有些微增加但未達到顯著差異(P = 0.08),慢性腎臟病之女性也在外側股骨髁膝關節軟骨T2值有顯著增加(P = 0.03),其中脛骨外側有些微增加但未達到顯著差異(P = 0.09)。此外,不論性別,前後角內外側半月板T2值以及內側股骨髁膝關節軟骨之T2值並無顯著差異,不過與男性組T2值變化相比,女性的變化有些微增加的趨勢。然而在膝關節軟骨ADC的參數中,與對照組相比,慢性腎臟病之不論性別,前後角內外側半月板MR T2值以及內外側股骨髁、脛骨內外側膝關節軟骨之ADC值並無顯著差異(P > 0.05)
磁振頻譜結果發現與對照組相比,女性慢性腎臟病患者膝關節軟骨下骨髓腔中的水含量和不飽和脂肪指數顯著增加(分別為P = 0.04和P = 0.02),但男性則沒有顯著改變。關連性的結果發現不論是慢性腎臟病或對照組,膝關節軟骨、半月軟骨T2值與身體質量指數(body mass index, BMI)、腎絲球過濾率(eGFR)、關節炎疼痛指數(WOMAC)皆沒有相關性,但是慢性腎臟病的T2值與退化性關節炎分級(KL grade)、磁振造影膝關節炎評分(MOAKS)具正相關並達顯著差異(r=0.47、P = 0.04和r=0.59、P=0.01),但對照組的T2值與KL grade 、MOAKS則沒有相關性(P > 0.05)。另外發現對照組軟骨下骨髓腔中水含量與eGFR存在負相關並且有達顯著差異(r=-0.77、P < 0.001),但慢性腎臟病組軟骨下骨髓腔中水含量與eGFR則不存在相關性(P > 0.05)。
我們的結論是,慢性腎臟病相關的MR T2值變化,外側膝關節軟骨的表現可能在其他軟骨之前,膝關節軟骨下骨髓腔水含量、不飽和脂肪變化,在性別表現上有所差異,並觀察到之間是否具有關連性,未來在合理的影像訊雜比資料下,膝關節軟骨和半月軟骨MR T2以及磁振頻譜的測量可作為調查慢性腎臟病膝關節軟骨退化有效之工具。
zh_TW
dc.description.abstractChronic kidney disease (CKD) is associated with a wide range of disorders of mineral and bone metabolism, including phosphate, calcium and parathyroid hormone dysregulation, renal osteodystrophy and vascular calcifications. Understanding this pathophysiology in mineral metabolism and bone diseases is very important, as recent evidence has suggested the concept of bone-vascular axis in CKD. However, the information for the articular cartilage and meniscus in CKD is limited. Specifically, the stage of this study are three-fold: 1) to assess composition variation of knee cartilage at the CKD using measurements of T2 relaxation time and the parameters of diffusion weighted imaging; 2) to quantify water and lipids changes of knee bone narrow at the CKD using MRS; and 3) to compare MR parameters (including MRI T2 values, DWI and MRS) with other traditional serum biomarkers and analyzing the correlation between its level and bone mineral densities of lumbar spine.
We prospectively enrolled 20 patients with CKD and 20 age- and sex-matched controls for this study, including 22 men and 18 women. All subjects underwent 3.0T MR examinations (GE Healthcare, Discovery MR750, USA), blood tests, bone mineral density examinations, and standard standing anteroposterior radiographs. Quantitative MR T2 measurement provides a noninvasive method to evaluate the early changes of fiber architecture and water content in cartilage and meniscus. Apparent diffusion coefficient (ADC) generated by DWI also can be used to detect early stage cartilage damage. We adopted the water and lipid content from MR spectroscopy (MRS) to verify the pathological characteristics of subchondral bone of the knee joint. The statistical analyses were performed with SPSS software (version 20, SPSS, Inc, Chicago, IL, USA). To compare groups with CKD and the controls, the Independent Sample t test was applied.
T2 values of the lateral femoral condyles cartilage were significantly increased (P = 0.02) in CKD patients as compared with the controls for men, and T2 values of the medial tibia cartilage increased slightly but did not reach a significant difference(P = 0.08). T2 values of the lateral femoral condyles were also significantly increased (P = 0.03) in CKD patients as compared with the controls for women, in which T2 values of the lateral tibia cartilage increased slightly but did not reach a significant difference (P = 0.09). The ADC of cartilage and meniscus were not significantly different in CKD patients compared with the controls for both genders. The water content and index of unsaturation lipid in the knee subchondral bone marrow was significantly increased (P = 0.04 and 0.02, respectively) in women CKD patients as compared with the women controls, but not significant in men. T2 values of cartilage and meniscus were positively correlated with the KL grade and MOAKS (r=0.47、P = 0.04 and r=0.59、P=0.01, respectively ) for CKD group, but not significant in control group ( P > 0.05).
In conclusion, CKD-related T2 changes in the lateral femoral condyles cartilage may precede alterations in other cartilage regions. The changes of water and lipids changes of knee bone marrow at the CKD are different in gender and the correlation between them is observed. These techniques may serve as effective tools in the investigation of knee cartilage degradation in CKD.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:00Z (GMT). No. of bitstreams: 1
U0001-1208202010082300.pdf: 2994046 bytes, checksum: 6cadb4a4c1f00eeb810d4c58b0991185 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄
口試委員會審定書
序言與謝辭
中文摘要……………………………………………………………….......i
英文摘要……………………………………………………………….….iii
第一章 概論
1.1研究背景………..………….………………………………………..1
1.2研究目的…………………………………………………………….3
1.3論文架構…………………………………………………………….4
第二章 研究方法與材料
2.1受試者收集…………………………………………………….……5
2.2生化分析…………………………………………………….………5
2.3骨質密度………………………………………………………...…..6
2.4關節炎疼痛評估…………………………………………………….6
2.5膝關節X光影像……………………………………………………7
2.6磁振造影
2.6.1磁振造影膝關節炎評分………………………………………7
2.6.2 MR T2值……………………………………..…….…....…….8
2.6.3擴散權重影像……………………………………….….…..11
2.6.4磁振頻譜………………………………………..…….....…13
2.7統計分析……………………………………………………...…....17
第三章 結果與討論
3.1慢性腎臟病之膝關節研究….…………………………………..…18
3.1.1 結果………………………………………………………...18
3.1.2 討論與結論…………………………………….…..............36
3.2常態退化之膝關節研究.………………………………………..…40
3.2.1 介紹………………………………………………………...40
3.2.2 受試者收集以及資料分析………………………………...41
3.2.3 結果………………………………………………………...44
3.2.4 討論與結論………………………………………………...54
第四章 結論………………..…………….……………..………………..57
參考文獻……………………………………………………..…………...58
dc.language.isozh-TW
dc.subject水分子擴散係數zh_TW
dc.subject腎性骨病變zh_TW
dc.subject膝關節zh_TW
dc.subject軟骨zh_TW
dc.subject軟骨下骨髓腔zh_TW
dc.subject磁振頻譜zh_TW
dc.subjectMR T2值zh_TW
dc.subjectMR T2en
dc.subjectapparent diffusion coefficient (ADC)en
dc.subjectChronic kidney disease-mineral and bone disorderen
dc.subjectkneeen
dc.subjectcartilageen
dc.subjectsubchondral bone marrowen
dc.subjectMR spectroscopy (MRS)en
dc.title探討慢性腎臟病於膝關節軟骨與軟骨下骨髓腔變化及其相關性:藉由磁振造影T2值、擴散權重影像、頻譜之研究zh_TW
dc.titleInvestigation of the changes and relationship between the cartilage and subchondral bone marrow on knee joint in chronic kidney disease:MR study with T2 value, diffusion-weighted imaging and spectroscopyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.coadvisor黃國書(Guo-Shu Huang)
dc.contributor.oralexamcommittee王昭穎(Chao-Ying Wang),吳文超(Wen-Chau Wu),葉子成(Tzu-Chen Yeh),高鴻文(Hung-Wen Kao),周銘鐘(Ming-Chung Chou)
dc.subject.keyword腎性骨病變,膝關節,軟骨,軟骨下骨髓腔,磁振頻譜,MR T2值,水分子擴散係數,zh_TW
dc.subject.keywordChronic kidney disease-mineral and bone disorder,knee,cartilage,subchondral bone marrow,MR spectroscopy (MRS),MR T2,apparent diffusion coefficient (ADC),en
dc.relation.page66
dc.identifier.doi10.6342/NTU202003049
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202010082300.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved