Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49650
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許文翰(Wen-Hann Sheu)
dc.contributor.authorChien-Yu Kaoen
dc.contributor.author高千渝zh_TW
dc.date.accessioned2021-06-15T11:39:51Z-
dc.date.available2019-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citation[1] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat. AP4 (1966) 302-307.
[2] G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagnetic Compatibility 23 (1981) 377-382.
[3] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Com. Physics 114 (1994) 185-200.
[4] J. P. Berenger, Perfectly matched layer for the FDTD solution of wavestructure interaction problems, IEEE Trans. Antennas Propagat. 44 (1996) 110-117.
[5] J. A. Roden and S. D. Gedney, Convolutional PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave Optical Tech. Lett. 27 (2000) 334-339.
[6] J. Hecht, City of light: The Story of Fiber Optics, Oxford University Press, New York, 1999.
[7] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and J. Liphardt, Subwavelength-diameter silica wires for low-loss optical wave guiding,
Nature 426 (2003) 816-819.
[8] R. G. Hunsperger, Photonic Devices and Systems, Marcel Dekker (1994).
[9] J. H. Franz and V. K. Jain, Optical Communications Components and systems, Narosa Publishing House (2000).
[10] W. He, B. J. Li and Y. B. Pun, Wavelength cross-angle, and core-diameter dependence of coupling efficiency in nanowire evanescent wave coupling, Opt. Lett. 34(10) (2009) 1597-1599.
[11] S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, Modeling endface output patterns of optical micro/nanofibers, Opt. Express. 16(12) (2008) 8887-8895.
[12] R. Mehra, H. Shahani, and A. Khan, Mach Zehnder interometer and its applications, IJCA (2014) 31-36.
[13] L. Vivien, S. Z. Laval, E. Cassan, X. L. Roux, and D Pascal, 2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single mode optical fibers, IEEE Journal of Lightwave Technology, 21(10) (2003) 2429-2433.
[14] L. Tong, M. Sumetsky, Subwavelength and nanometer diameter optical fibers, Springer-Verlag Berlin Heidelberg, 2010
[15] K. J. Huang, S. Y. Yang and L. M. Tong, Modeling evanescent coupling between two parallel optical nanowires, The Optical Society Applied Optics. 46(9) (2007)1429-1434.
[16] B. Cockburn, F. Y. Li, C. W. Shu, Locally divergence-free discontinuous Galerkin methods for the Maxwell’s equations, J. Comput. Phys. 194 (2004) 588-610.
[17] R. A. Nicolaides, D. Q. Wang, Helicity and variational principles for Maxwell’s equations, Int. J. Electron. 54 (1983) 861-864.
[18] J. S. Kole, M. T. Figge, De Raedt, Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell’s equations, Phys. Rev. E 65 (2002) 0667051 1-12.
[19] S. D. Gedney, An Anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propagat. 44 (1996) 1630-1639.
[20] S. Abarbanel, D. Gottlieb, J. S. Hesthaven, Non-linear PML equations for time dependent electromagnetics in three dimensions, J. Sci. Comput. 28 (2006) 125-136.
[21] Kuzuoglu, M. and R. Mittra, ”Frequency dependence of the constitutive parameters of causal perfectly matched antisotropic absorbers,” IEEE Microwave Guided Wave Lett., Vol. 6, 1996, pp.164-168.
[22] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, et al., A frequency-dependent finite-difference
time-domain formulation for dispersive material, IEEE Transactions on Electromagnetic Compatibility. 32(3) (1990) 222-227.
[23] Tony W. H. Sheu, R. K. Lin, An incompressible Navier-Stokes model implemented on nonstaggered grids, Numer. Heat Transfer B 44 (2003) 277-294.
[24] P. H. Chiu, Tony W. H. Sheu, R. K. Lin, Development of a dispersion-relation-preserving upwinding scheme for incompressible Navier-Stokes equations on non-staggered grids, Numer. Heat Transfer B 48 (2005) 543-569.
[25] P. J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett. 80 (1980) 383-386.
[26] J. E. Marsden, A.Weinsten, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica D 4 (1982) 394-406.
[27] X. W. Lu, R. Schmid, Symplectic algorithms for Maxwell’s equations, Proc. for International Conference on New Applications of Multisymplectic Field Theories, Salamanca, Spain, Sept. (1999) 10-25.
[28] Z. X. Huang, X. L. Wu, Symplectic partitioned Runge Kutta scheme for Maxwell’s equations, Int. J. Quantum Chem. 106 (2006) 839-842.
[29] I. Saitoh, Y. Suzuki, N. Takahashi, The symplectic finite difference time domain method, IEEE Trans. Magn. 37(5) (2001) 3251-3254.
[30] L. M. Tong, J. Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express. 12 (2004) 1025-1035.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49650-
dc.description.abstract本論文是在交錯網格上發展一三維時域有限差分法(FDTD),以求解馬克斯威爾方程。本文的方法是在時域內,在滿足電場和磁場零散度條件(亦即高斯定律)的架構下求解法拉第定律和安培定律。所提出的數值方法於時間離散方面使用具辛結構(Symplectic)之兩階數二階之Runge-Kutta方法,在經過長時間模擬後,解仍得以保持馬克思威爾方程能量守恆的性質; 另透過法拉第及安培旋度方程空間微分項的推導,以期求得在色散關係上相當準確的解。
為了達到具最佳數值色散的性質,本文所提出的數值方法能在時間上和空間上保有相當好的理論收斂斜率, 且能有效地減少實解相速度與數值相速度之間的誤差,而得以顯著地降低了因時域有限差分所造成的數值色散誤差以及各向異性誤差。本研究證實了所提出的數值方法在具辛結構與色散關係上皆具有良好的保持性,尤其在針對經長時間馬克斯威爾方程的數值模擬後,其效果尤為顯著。本文進而將此數值方法應用於探討消逝波之奈米光纖之間的耦合效率:給入HE11單模態,準確預估空氣中兩材料為二氧化矽之直徑為350 nm奈米光纖其間的耦合效率; 在兩光纖重疊的部分,隨不同x位置切yz平面及取y軸之1D場,了解電、磁場及波印廷向量之物理量在奈米光纖間的變化; 利用波印廷定理之能量守恆的性質說明此數值方法之準確性。此外,本文利用三維的模擬結果,了解HE11單模態之電、磁場在奈米光纖內部的流線走向,以及在兩光纖重疊範圍的煙線走向。
zh_TW
dc.description.abstractAn explicit finite-difference scheme for solving the three-dimensional Maxwell’s equations in staggered grids is presented in time domain. The aim of this thesis is to solve the Faraday’s and Amp`ere’s equations in time domain within the discrete zero-divergence context for the electric and magnetic fields (or Gauss’s law). The local conservation laws in Maxwell’s equations are also numerically preserved all the time using proposed the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday’s and Amp`ere’s equations are then properly discretized to get a phase very accurate solution. To achieve the goal of getting the best dispersive characteristics, this centered scheme minimizes the difference between the exact and numerical phase velocities. The significant dispersion and anisotropy errors manifested normally in finite difference time domain methods are therefore much reduced. The dual-preserving (symplecticity and dispersion relation equation) solver is numerically demonstrated to be efficient for use to get in particular a long-term accurate Maxwell’s solution. By applying the developed FDTD scheme, we aim to study the wave propagation issue on nanowires. The efficency of evanescent coupling between two air-clad silica nanowires with diameter D = 350nm in HE11 single-mode operation is addressed. In the overlapping region, we can see that the electric, magnetic and poynting fields vary between two nanowires by cutting 2D-planes and 1D-Y-axis with different a streamwise positions. From the property of conservation of energy of Poynting theory, we confirm the validity of the propoesd finite difference method. Based on the computed 3D result of solving the Maxwell’s equations, we can clearly predict not only the streamlines of eletric and magnetic fields of HE11 mode in two nanowires but can also reveal the streaklines of them in the overlapping region.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:39:51Z (GMT). No. of bitstreams: 1
ntu-105-R03525003-1.pdf: 21021173 bytes, checksum: c63b9980ec2c1f5a7c83d1166705551c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . .ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . .iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . iv
第一章 序論 . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . .3
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . 5
1.4 研究目標. . . . . . . . . . . . . . . . . . . . . . .5
1.5 論文大綱. . . . . . . . . . . . . . . . . . . . . . 7
第二章 電磁波方程-馬克斯威爾方程式. . . . . . . . . . . . 8
2.1 法拉第/安培/高斯方程組及其推導. . . . . . . . . . . . 8
2.2 法拉第/安培方程組之數學特性. . . . . . . . . . . . . . 9
2.3 卷積完美匹配吸收層. . . . . . . . . . . . . . . . . .11
第三章 數值方法. . . . . . . . . . . . . . . . . . . . 16
3.1 交錯網格系統下之FDTD離散方法. . . . . . . . . . . . . 16
3.2 具辛結構之PRK時間離散方法. . . . . . . . . . . . . . 18
3.3 空間離散方程之推導. . . . . . . . . . . . . . . . . .19
第四章 具色散關係式保持特性之離散方法及其分析. . . . . . . .25
4.1 三維空間離散分析. . . . . . . . . . . . . . . . . . .25
4.1.1 積分域之影響. . . . . . . . . . . . . . . . . . . 28
4.1.2 Cr數之影響. . . . . . . . . . . . . . . . . . . . 28
4.1.3 角度變化下之係數分佈. . . . . . . . . . . . . . . .28
4.2 數值分析之結果與討論. . . . . . . . . . . . . . . . .29
第五章 程式驗證. . . . . . . . . . . . . . . . . . . . 34
5.1 實解驗證. . . . . . . . . . . . . . . . . . . . . . 35
5.2 結果與討論. . . . . . . . . . . . . . . . . . . . . 38
第六章 於奈米光纖問題之應用. . . . . . . . . . . . . . . 48
6.1 物理問題之描述. . . . . . . . . . . . . . . . . . . 48
6.1.1 耦合效率. . . . . . . . . . . . . . . . . . . . . 49
6.1.2 消逝波之耦合. . . . . . . . . . . . . . . . . . . 50
6.1.3 符合能量守恆定律的計算結果. . . . . . . . . . . . . 51
6.1.4 電、磁線之三維結構. . . . . . . . . . . . . . . . .52
第七章 結論. . . . . . . . . . . . . . . . . . . . . . 77
7.1 研究成果與討論. . . . . . . . . . . . . . . . . . . 77
7.2 未來工作與展望. . . . . . . . . . . . . . . . . . . 78
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . 79
附錄A. . . . . . . . . . . . . . . . . . . . . . . . . 82
HE11 模態在奈米矽材料光纖之電、磁場實解. . . . . . . . . . 82
dc.language.isozh-TW
dc.subject數值相速度zh_TW
dc.subject馬克斯威爾方程zh_TW
dc.subject交錯網格zh_TW
dc.subject消逝波zh_TW
dc.subject二氧化矽奈米光纖zh_TW
dc.subject耦合效率zh_TW
dc.subjectcoupling efficiencyen
dc.subjectnumerical phase velocitiesen
dc.subjectstaggered gridsen
dc.subjectEvanescent waveen
dc.subjectsilica nanowiresen
dc.title以模擬馬克斯威爾方程的途徑,探討奈米光纖之間的耦合效率zh_TW
dc.titleInvestigation into nanowire coupling efficiency through the simulation of Maxwell’s equationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰(Jia-Han Li),薛承輝(Chun-Hway Hsueh),張宏鈞
dc.subject.keyword馬克斯威爾方程,交錯網格,消逝波,二氧化矽奈米光纖,耦合效率,數值相速度,zh_TW
dc.subject.keywordstaggered grids,Evanescent wave,silica nanowires,coupling efficiency,numerical phase velocities,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201602416
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
20.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved