Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃憲松
dc.contributor.authorChun-Che Tungen
dc.contributor.author童雋哲zh_TW
dc.date.accessioned2021-05-15T17:50:36Z-
dc.date.available2019-10-09
dc.date.available2021-05-15T17:50:36Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationReferences
1 Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196, doi:10.1126/science.1245316 (2014).
2 Luedi, P. P. et al. Computational and experimental identification of novel human imprinted genes. Genome research 17, 1723-1730, doi:10.1101/gr.6584707 (2007).
3 Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature reviews. Genetics 2, 21-32, doi:10.1038/35047554 (2001).
4 Wilkinson, L. S., Davies, W. & Isles, A. R. Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8, 832-843, doi:10.1038/nrn2235 (2007).
5 Luedi, P. P., Hartemink, A. J. & Jirtle, R. L. Genome-wide prediction of imprinted murine genes. Genome research 15, 875-884, doi:Doi 10.1101/Gr.3303505 (2005).
6 Casanova, E. et al. A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31, 37-42 (2001).
7 Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308-1323, doi:10.1016/j.cell.2013.02.016 (2013).
8 Lepage, J. F. et al. Genomic imprinting effects of the X chromosome on brain morphology. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 8567-8574, doi:10.1523/JNEUROSCI.5810-12.2013 (2013).
9 Yamaguchi, S., Shen, L., Liu, Y., Sendler, D. & Zhang, Y. Role of Tet1 in erasure of genomic imprinting. Nature 504, 460-464, doi:10.1038/nature12805 (2013).
10 Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nature reviews. Genetics 12, 565-575, doi:10.1038/nrg3032 (2011).
11 Huang, H. S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185-189, doi:10.1038/nature10726 (2012).
12 King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58-62, doi:10.1038/nature12504 (2013).
13 Wang, Y. et al. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Molecular and cellular biology 24, 270-279 (2004).
14 Yamasaki, K. et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Human molecular genetics 12, 837-847 (2003).
15 Ferron, S. R. et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381-385, doi:10.1038/nature10229 (2011).
16 Schmidt-Edelkraut, U., Hoffmann, A., Daniel, G. & Spengler, D. Zac1 regulates astroglial differentiation of neural stem cells through Socs3. Stem Cells 31, 1621-1632, doi:10.1002/stem.1405 (2013).
17 Mardirossian, S., Rampon, C., Salvert, D., Fort, P. & Sarda, N. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Experimental neurology 220, 341-348, doi:10.1016/j.expneurol.2009.08.035 (2009).
18 Sato, M. & Stryker, M. P. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proceedings of the National Academy of Sciences of the United States of America 107, 5611-5616, doi:10.1073/pnas.1001281107 (2010).
19 Wallace, M. L., Burette, A. C., Weinberg, R. J. & Philpot, B. D. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74, 793-800, doi:10.1016/j.neuron.2012.03.036 (2012).
20 Yashiro, K. et al. Ube3a is required for experience-dependent maturation of the neocortex. Nature neuroscience 12, 777-783, doi:10.1038/nn.2327 (2009).
21 Huang, H. S. et al. Snx14 regulates neuronal excitability, promotes synaptic transmission, and is imprinted in the brain of mice. PLoS One 9, e98383, doi:10.1371/journal.pone.0098383 (2014).
22 Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature genetics 15, 70-73, doi:10.1038/ng0197-70 (1997).
23 Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature genetics 15, 74-77, doi:10.1038/ng0197-74 (1997).
24 Duker, A. L. et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. European journal of human genetics : EJHG 18, 1196-1201, doi:10.1038/ejhg.2010.102 (2010).
25 Schanen, N. C. Epigenetics of autism spectrum disorders. Human molecular genetics 15 Spec No 2, R138-150, doi:10.1093/hmg/ddl213 (2006).
26 Horike, S., Cai, S., Miyano, M., Cheng, J. F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature genetics 37, 31-40, doi:10.1038/ng1491 (2005).
27 Moretti, P. & Zoghbi, H. Y. MeCP2 dysfunction in Rett syndrome and related disorders. Current opinion in genetics & development 16, 276-281, doi:10.1016/j.gde.2006.04.009 (2006).
28 Davies, W. et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nature genetics 37, 625-629, doi:10.1038/ng1577 (2005).
29 Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643-648, doi:10.1126/science.1190830 (2010).
30 Gregg, C., Zhang, J., Butler, J. E., Haig, D. & Dulac, C. Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329, 682-685, doi:10.1126/science.1190831 (2010).
31 Wang, X. et al. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PloS one 3, e3839, doi:10.1371/journal.pone.0003839 (2008).
32 DeVeale, B., van der Kooy, D. & Babak, T. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS genetics 8, e1002600, doi:10.1371/journal.pgen.1002600 (2012).
33 Ko, Y. et al. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America 110, 3095-3100, doi:10.1073/pnas.1222897110 (2013).
34 Mellios, N. et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nature neuroscience 14, 1240-1242, doi:10.1038/nn.2909 (2011).
35 Morales, B., Choi, S. Y. & Kirkwood, A. Dark rearing alters the development of GABAergic transmission in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 8084-8090 (2002).
36 Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F. & Maronpot, R. R. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Molecular carcinogenesis 25, 86-91 (1999).
37 Tunster, S. J., Jensen, A. B. & John, R. M. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 145, R117-137, doi:10.1530/REP-12-0511 (2013).
38 Majdan, M. & Shatz, C. J. Effects of visual experience on activity-dependent gene regulation in cortex. Nature neuroscience 9, 650-659, doi:10.1038/nn1674 (2006).
39 Lyckman, A. W. et al. Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proceedings of the National Academy of Sciences of the United States of America 105, 9409-9414, doi:10.1073/pnas.0710172105 (2008).
40 Hensch, T. K. Critical period plasticity in local cortical circuits. Nature reviews. Neuroscience 6, 877-888, doi:10.1038/nrn1787 (2005).
41 Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America 97, 11038-11043 (2000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4963-
dc.description.abstract中文摘要
染色體印記,是為經外遺傳的調控,而形成特殊、基因表達視其親源而定的現象。其主要發生於哺乳類的神經系統,因此,若其機制上的異常即會造成神經發育、或心智功能上的疾病。雖然染色體印記對於腦部功能是如此的重要,但印記基因明確的數目、及何為印記基因,到目前為止仍未定案。而會有如此的困難度一部份來自於腦部結構的多樣性。印記基因的表達除視其親源而定外,也會受到不同的細胞種類、發育上的時間點、以及環境的影響。為了明確的辨識印記基因,我們藉由在不同的細胞型態、以及發育時間點上,建立一篩選平台。技術上,我們利用次世代定序、以及基因轉殖鼠來達成此目標,而此篇論文所介紹,在小鼠視覺皮質層獨立興奮性神經元的方法,也可應用在不同的細胞型態上。在另一方面,為了看到環境對於印記狀態的操弄,我們選擇在完全無光線飼養下(24小時全暗)、比較正常環境飼養(12小時光照、12小時黑暗)此兩種情況。藉此,破壞小鼠視覺皮層的正常發育,來看光線經驗的不同對於印記狀態的影響。藉由上述的方法,希望我的工作可以讓我們更加地了解印記基因在腦部扮演的角色、以及為何在演化上發展出如此獨立的機制。更重要的,因而印記基因異常而造成的疾病,也可藉由這樣的策略發展治療方法。
zh_TW
dc.description.abstractAbstract
Genomic imprinting is an epigenetic process by which certain genes are expressed in a parent-of-origin-specific manner. Genomic imprinting predominantly occurs in the mammalian nervous system. Dysfunctional genomic imprinting causes various neurological and psychiatric disorders. Despite the importance of genomic imprinting in brain function, the number and identity of imprinted genes have been proposed, but are still debated. The key obstacles to advance the field of genomic imprinting in the brain are the complex expression patterns of imprinted genes and the heterogeneous nature of the brain. The expression of imprinted genes can be regulated by different cell types, developmental stages and the environment. In order to solve the urgent problems of this field, I first developed a platform to comprehensively profile imprinted genes in a specific cell type under different developmental stages. Using the technique of deep sequencing and the advantage of engineered mice, I can determine the genomic imprinting status of excitatory neurons in mouse visual cortex. The success of the platform I developed here could apply to the profiling of the genomic imprinting status in other cell types. Regarding to the environmental effect on the imprinting status of the brain, I chose the dark rearing condition (24hr Dark) in comparison to the normal rearing (12hr/12hr, Dark/Light). Under this manipulation, we destroyed the maturation of visual cortex and determined the effect of light experience on the imprinting status of mouse visual cortex. My comprehensive profiling work of genomic imprinting status in the brain could deepen our understanding about why our brain developed genomic imprinting during evolution. More importantly, the knowledge gained here may provide therapeutic strategies for genomic imprinting disorders.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:50:36Z (GMT). No. of bitstreams: 1
ntu-103-R01454011-1.pdf: 3330532 bytes, checksum: a0627a05ce0d7052b48df5817778e4aa (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書……………………………………………………...….i
中文摘要………………………………………………………………...…ii
Abstract…………...……………………………………………………….iii
Introduction……………………………………………………………….p1
What are imprinted genes?.................................................................. p1
Specific features of imprinted genes…………………………………p2
The important roles of imprinted genes in the brain…………………p2
Our hypothesis………………………………………………………..P4
Materials and methods…………………………………………………….p6
Mice……………………………………………………………. ……p6
Immunofluorescence staining.............................................................. p7
Fluorescence-based laser capture microdissection.............................. p8
Visual cortical RNA isolation, library preparation and sequencing.....p9
Excitatory neuronal RNA isolation, library preparation and sequencing
................................................................ …………………………...p10
RNA-seq analysis.............................................................................. p11
Real-time qPCR analysis................................................................... p11
Statistical analysis............................................................................. p12
Results…………………………………………………………………...p13
The Cre/loxP recombination system in transgenic mice expresses fluorescent protein specifically in the excitatory neurons of the mice brains................................................................................................. p13
Sample preparations for laser capture microdissection......................p14
RNA amplification and library build-up for RNA-seq...................... p17
RNA-seq of the visual cortex............................................................ p17
Environmental effect on the parent-of-origin-specific expression in the mouse visual cortex .......................................................................... p20
Discussion……………………………………………………………….p22
References……………………………………………………………….p40
 
dc.language.isoen
dc.title小鼠視覺皮質層印記基因表現圖譜zh_TW
dc.titleProfiling of Parent-of-Origin-Specific Expression in the Mouse Visual Cortexen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊樹諄,林劭品
dc.subject.keyword印記基因,視覺皮質層,外遺傳,神經系統,次世代定序,zh_TW
dc.subject.keywordImprinted genes,Visual cortex,Epigenetic,Nervous system,Deep sequencgin,en
dc.relation.page43
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf3.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved