Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49624
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏
dc.contributor.authorMin-Ling Linen
dc.contributor.author林敏玲zh_TW
dc.date.accessioned2021-06-15T11:38:20Z-
dc.date.available2019-11-09
dc.date.copyright2016-11-09
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E.(2006). A resilient, low-frequency, small-world human brain functional network with highly
connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72.
2. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J., Meuli, R., et al.(2009). Predicting human resting-state functional connectivity from structural
connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035-2040.
3. Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C.H., & Meyerand, M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American Journal of Neuroradiology, 22(7), 1326-1333.
4. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519-534.
5. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current opinion in neurology, 21(4), 424-430.
6. Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E.A. (2015). Default mode network connectivity during task execution. Neuroimage,
122, 96-104.
7. Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functionalconnectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine, 34(4), 537-541.
8. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., &Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673-9678.
9. Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review
of methods and clinical applications. American Journal of Neuroradiology, 34(10),1866-1872.
10. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functionalconnectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258.
11. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E.,Filippini N., Watkins KE, Toro R., & Beckmann, C. F. (2009). Correspondence of
the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106(31), 13040-13045.
12. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M.,Poncelet, B. P., Cohen, M.S., & Turner, R. (1992). Dynamic magnetic resonance
imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675-5679.
13. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868-9872.
14.http://classes.midlandstech.edu/carterp/Courses/bio210/Chap12/lecture1.htm
15.Gao, Q., Duan, X., & Chen, H. (2011). Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage, 54(2), 1280-1288.
16.Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery,and execution in the distributed motor network: a time-course study with functional MRI. Cerebral cortex, 18(12), 2775-2788.
17.Guillot, A., Di Rienzo, F., MacIntyre, T., Moran, A. P., & Collet, C. (2012). Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition.
18.http://study.com/academy/lesson/peripheral-nervous-system-definition-function-parts.html
19.http://antranik.org/peripheral-nervous-system-spinal-nerves-and-plexuses
20.http://bio1152.nicerweb.com/Locked/media/ch49/cortex.html
21.Lattari, E., Velasques, B., Paes, F., Cunha, M., Budde, H., Basile, L., Cagy, M., Piedade, R., & Ribeiro, P. (2010). Corticomuscular coherence behavior in fine motor control of force: a critical review. Rev Neurol, 51(10), 610-623.
22.Feige, B., Aertsen, A. D., & Kristeva-Feige, R. (2000). Dynamic synchronization between multiple cortical motor areas and muscle activity in phasic voluntary movements. Journal of Neurophysiology, 84(5), 2622-2629.
23.Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1457), 1001-1013.
24.Uddin, L. Q., Clare Kelly, A. M., Biswal, B. B., Xavier Castellanos, F., & Milham, M. P. (2009). Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Human brain mapping, 30(2), 625-637.
25.Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.
26.Hsu, N. S., Novick, J. M., & Jaeggi, S. M. (2014). The development and malleability of executive control abilities. Frontiers in behavioral neuroscience, 8.
27.Meyer, R. A., Towse, T. F., Reid, R. W., Jayaraman, R. C., Wiseman, R. W., & McCully, K. K. (2004). BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR in biomedicine, 17(6), 392-398.
28.Duteil, S., Wary, C., Raynaud, J. S., Lebon, V., Lesage, D., Leroy‐Willig, A., & Carlier, P. G. (2006). Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magnetic resonance in medicine, 55(2), 450-454.
29.Jordan, B. F., Kimpalou, J. Z., Beghein, N., Dessy, C., Feron, O., & Gallez, B. (2004). Contribution of oxygenation to BOLD contrast in exercising muscle. Magnetic resonance in medicine, 52(2), 391-396.
30.D. P., & Alfonsi, J. (2003). BOLD magnetic resonance imaging of skeletal muscle. In Seminars in musculoskeletal radiology (Vol. 7, No. 04, pp. 307-316). Copyrightc 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.:+ 1 (212) 584-4662.
31.Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebral cortex, 18(12), 2775-2788.
32.Hyvarinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4), 411-430.
33.Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., Yong He, Chao-Gan Yan, & Zang, Y. F. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS one, 6(9), e25031.
34.Guillot, A., Di Rienzo, F., MacIntyre, T., Moran, A., & Collet, C. (2012). Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Frontiers in human neuroscience, 6, 247.
35.Kokkonen, S. M., Nikkinen, J., Remes, J., Kantola, J., Starck, T., Haapea, M., Tuominen, J., Tervonen, O., & Kiviniemi, V. (2009). Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magnetic resonance imaging, 27(6), 733-740.
36.Hsu, N. S., Novick, J. M., & Jaeggi, S. M. (2014). The development and malleability of executive control abilities. Frontiers in behavioral neuroscience, 8.
37.Witt, S. T., Laird, A. R., & Meyerand, M. E. (2008). Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage, 42(1), 343-356.
38.Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human brain mapping, 13(2), 55-73.
39.Grezes, J., Valabregue, R., Gholipour, B., & Chevallier, C. (2014). A direct amygdala‐motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Human brain mapping, 35(12), 5974-5983.
40.Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1-38.
41.Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015). Simultaneous brain–cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning. PLoS Biol, 13(6), e1002186.
42.Stroman, P. W. (2005). Magnetic resonance imaging of neuronal function in the spinal cord: spinal FMRI. Clinical medicine & research, 3(3), 146-156.
43.Mima, T., & Hallett, M. (1999). Corticomuscular coherence: a review. Journal of Clinical Neurophysiology, 16(6), 501.
44.Timmermann, L., Gross, J., Kircheis, G., Haussinger, D., & Schnitzler, A. (2002). Cortical origin of mini-asterixis in hepatic encephalopathy. Neurology, 58(2), 295-298.
45.Toussaint, J. F., Kwong, K. K., Weisskoff, R. M., Laraia, P. J., & Kantor, H. L. (1996). Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo‐planar imaging. Magnetic resonance in medicine, 35(1), 62-69.
46.Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland: Sinauer Associates
47.Hennig, J., Scheffler, K., & Schreiber, A. (2000). Time resolved observation of BOLD effect in muscle during isometric exercise. In Proc Int Soc Magn Reson Med (Vol. 8, p. 122).
48.Jacobi, B., Bongartz, G., Partovi, S., Schulte, A. C., Aschwanden, M., Lumsden, A. B., Staub, D., Huegli, RW., Bilecen & Lyo, J. K. (2012). Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. Journal of Magnetic Resonance Imaging, 35(6), 1253-1265.
49.Buxton, R. B., Uludağ, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23, S220-S233.
50.Towse, T. F., Slade, J. M., Ambrose, J. A., DeLano, M. C., & Meyer, R. A. (2011). Quantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle. Journal of Applied Physiology, 111(1), 27-39.
51.Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150-157.
52.Mima, T., & Hallett, M. (1999). Corticomuscular coherence: a review. Journal of Clinical Neurophysiology, 16(6), 501.
53.Pohja, M., Salenius, S., & Hari, R. (2005). Reproducibility of cortex–muscle coherence. Neuroimage, 26(3), 764-770.
54.Chwodhury, A., Raza, H., Dutta, A., Nishad, S. S., Saxena, A., & Prasad, G. (2015, August). A study on cortico-muscular coupling in finger motions for exoskeleton assisted neuro-rehabilitation. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4610-4614). IEEE.
55.Bhambhani, Y., Fan, J. L., Place, N., Rodriguez-Falces, J., & Kayser, B. (2014). Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities. Frontiers in physiology, 5.
56.Schroeter, M. L., Kupka, T., Mildner, T., Uludağ, K., & von Cramon, D. Y. (2006). Investigating the post-stimulus undershoot of the BOLD signal—a simultaneous fMRI and fNIRS study. Neuroimage, 30(2), 349-358.
57.Hashimoto, Y., Ushiba, J., Kimura, A., Liu, M., & Tomita, Y. (2010). Correlation between EEG-EMG coherence during isometric contraction and its imaginary execution. Acta Neurobiol Exp (Wars), 70(1), 76-85.
58.Lebon, F., Rouffet, D., Collet, C., & Guillot, A. (2008). Modulation of EMG power spectrum frequency during motor imagery. Neuroscience letters, 435(3), 181-185.
59.Partovi, S., Jacobi, B., Gordon, Y., Zipp, L., Schulte, A. C., Karimi, S., ... & Bilecen, D. (2013). Assessment of skeletal muscle microperfusion using MRI. In Magnetic Resonance Imaging of the Skeletal Musculature (pp. 87-114). Springer Berlin Heidelberg.
60.Akima, H. (2012). Evaluation of functional properties of skeletal muscle using functional magnetic resonance imaging (fMRI). The Journal of Physical Fitness and Sports Medicine, 1(4), 621-630.
61.Noseworthy, M. D., Davis, A. D., & Elzibak, A. H. (2010, June). Advanced MR imaging techniques for skeletal muscle evaluation. In Seminars in musculoskeletal radiology (Vol. 14, No. 02, pp. 257-268). c Thieme Medical Publishers.
62.Bulte, D. P., Alfonsi, J., Bells, S., & Noseworthy, M. D. (2006). Vasomodulation of skeletal muscle BOLD signal. Journal of Magnetic Resonance Imaging, 24(4), 886-890.
63.https://www.pinterest.com/dancovey73/neurology/
64.PITMAN, R. M. (2016). 2 Nervous System. Pharmacology, 11, 5.
65.Damon, B. M., Louie, E. A., & Sanchez, O. A. (2007). Physiological basis of muscle functional MRI. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 14(1), P85.
66.I-Ning Tang, Tun Jao, Ed Bullmore, Jyh-Horng Chen. ‘Spontaneous Brain Oscillations Beyond Resting Brain’. 2011. 17th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Quebec City, Canada, Poster Session
67.Rao, S. M., Binder, J. R., Hammeke, T. A., Bandettini, P. A., Bobholz, J. A., Frost, J. A., & Hyde, J. S. (1995). Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology, 45(5), 919-924.
68.Grafton, S. T., Woods, R. P., & Mazziotta, J. C. (1993). Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Experimental Brain Research, 95(1), 172-176.
69.Sanes, J. N., Donoghue, J. P., Thangaraj, V., Edelman, R. R., & Warach, S. (1995). Shared neural substrates controlling hand movements in human motor cortex. Science, 268(5218), 1775.
70.Schaechter, J. D. (2004). Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress in neurobiology, 73(1), 61-72.
71.Fan, Y. T., Wu, C. Y., Liu, H. L., Lin, K. C., Wai, Y. Y., & Chen, Y. L. (2015). Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Frontiers in human neuroscience, 9.
72.Tuladhar, A. M., Snaphaan, L., Shumskaya, E., Rijpkema, M., Fernandez, G., Norris, D. G., & de Leeuw, F. E. (2013). Default mode network connectivity in stroke patients. PLoS One, 8(6), e66556.
73.Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. J. (2003). Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 126(11), 2476-2496.
74.Shen, X., Papademetris, X., & Constable, R. T. (2010). Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. Neuroimage, 50(3), 1027-1035.
75.Grefkes, C., & Fink, G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, awr033.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49624-
dc.description.abstract人體的運動行為是由中樞與週邊神經系統相互調控的。過去研究發現藉由量測主動或病理性的肌肉收縮相關訊號,證實大腦皮質與上臂週邊神經系統具有同調性。先前在行為認知實驗也指出大腦特定的運動皮質區會調控不同的肌肉協同作用,且會參與不同的大腦網路。然而,目前對於大腦皮質與週邊神經系統間功能性連結之研究相對較少。因此,在本研究中,我們將探討大腦皮質與上臂週邊神經系統功能性網路連結之關係。
本研究共收錄三十七位健康受試者,藉由三個不同線圈之搭配組合,同步收取大腦及上肢在任務態以及靜息態的功能磁共振造影的迴訊平面造影信號。在任務態的腦功能磁共振造影的實驗中,受試者需執行或想像手部動作;而在靜息態的腦功能磁共振造影的實驗中,受試者需張眼並且不做任何系統性思考的行為。實驗數據以一般線性模型、種子相關分析、區域配對相關係數與獨立成分分析做功能性影像分析。
在任務態功能性磁振造影發現,在中央前腦回、輔助運動區有顯著性的活化。而在靜息態功能性磁振造影發現,上臂週邊神經系統與左背外側前額葉皮層,中央溝前側腦回,左頂下葉腦回,前扣帶迴皮質,以及小腦有顯著的功能性連結,並會參與大腦功能性網路之變化,如:運動、感覺運動、執行控制網路、預設模式網路、視丘、小腦、體感覺網路。而在顳葉迴,梭狀回,腦島,海馬旁回,扣帶皮層,杏仁核,以及小腦和上臂週邊神經系統有顯著的區域相關係數 。
本研究在傳統認知功能性磁振影像基礎上,採用不同之實驗方式,同步收取大腦及上肢的功能磁共振造影迴訊平面造影信號。在本研究之結果中,上臂週邊神經系統與大腦之間有密切的功能性連結,上臂週邊神經系統除了與大腦動作控制網絡有高度之功能性連結,並且參與調控大腦認知相關網路之功能。本研究初步開啟了以影像方法同步探究中樞與週邊神經系統之連結,未來期望可應用於神經系統間之相互整合研究,以提供臨床輔助診斷之參考依據。
zh_TW
dc.description.abstractThe human movement is a behavior from the cooperation between central and peripheral nervous system. Previous studies confirmed the coherence between the cerebral cortex and the peripheral nervous system of upper limb by measuring the muscle signals form active or pathological muscle contraction, terming corticomuscular coherence. In addition, the specific motor cortical area would modulate the different muscle synergies, and be involved in distinct brain functional network. However, few studies focused on the relationship between the brain functional networks and peripheral nervous system. This study aimed to explore the functional coupling between the central nervous system and the peripheral nervous system of upper limb.
Thirty-seven healthy subjects participated in the functional magnetic resonance imaging (fMRI) experiments. We established the imaging platform to collect the echo planar imaging (EPI) signals under the experimental design of task-based and task-free fMRI from human brain and upper limb simultaneously. All data were acquired using three coils: one 20-channels head coil, one 32-channels spine coil, and one 18-channels flexible surface coil. In the task-based sessions, the participants were instructed to execute or image hand movement; in the task-free fMRI scanning, participants were asked to open their eyes and do not think systematically. Generalized linear modeling, seed-based functional connectivity, regional pairwise correlation coefficient (RPCC) and independent component analysis were used for the functional data analyzing.
Our result demonstrated that the peripheral nervous system of upper limb and the motor-related cerebral areas, including of precentral gyrus and supplementary motor area, had significant activation in the task-based fMRI. Seeding at the peripheral activation during motor tasks, the functional connectivity was identified in several brain regions, included the left dorsolateral prefrontal cortex, precentral gyrus, left inferior parietal gyrus, anterior cingulate cortex, and cerebellar lobules. The peripheral nervous system of upper limb showed that the most-linked hub-regions in middle temporal gyrus, fusiform gyrus, insula, parahippocampal gyrus, cingulate cortex, amygdala, cerebellar lobule Crus I, and cerebellar lobule VII. In the result analyzed by ICA, the peripheral nervous system of upper limb would involve in the brain functional network, including motor, sensorimotor, executive control network, default mode network, thalamus, cerebellum, and somatosensory network.
We established a novel imaging-platform to collect the functional images from human brain and upper limb simultaneously. This study disclosed the functional coupling between the peripheral nervous system of upper limb and the brain cortex and demonstrated that peripheral nervous system also involved in the regulation of brain cognitive function and related network changes. We expect that it could be applied furthering investigation of central-peripheral communication and could be used in the clinical diagnosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:38:20Z (GMT). No. of bitstreams: 1
ntu-105-R03945036-1.pdf: 3292160 bytes, checksum: 4acf454c0e7729a4e75ea932edfa2187 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1. Peripheral Nervous System 1
1.2. Brain-peripheral Connectivity 6
1.2.1. Corticomuscular Coherence 7
1.3. Functional Magnetic Resonance Imaging (fMRI) 8
1.3.1. Task-based fMRI 9
1.3.2. Resting-state fMRI (rs-fMRI) 11
1.4. The BOLD Effect in Muscle Tissue 15
1.5. Motivation and Hypothesis 16
Chapter 2 Materials and Methods 17
2.1. Participants 17
2.2. Experimental Design 17
2.2.1. Task-based Sessions 17
2.2.2. Resting-state Sessions 18
2.3. Data Acquisition 19
2.4. Data Analysis 20
2.4.1 Preprocessing 21
2.4.2 Task-based sessions (GLM analysis) 22
2.4.3 Seed-based BOLD correlation 23
2.4.4 ICA 24
Chapter 3 Results 25
3.1. Task-based fMRI 25
3.2. Seed-based Functional Connectivity Analysis 27
3.3. Functional Networks Acquired by ICA 30
Chapter 4 Discussion 34
4.1. Task-based fMRI 34
4.2. Hemodynamic Response of Right Upper-arm areas 35
4.3. Motor-related Brain-peripheral Functional Networks 39
4.4. Non-motor-related Brain-peripheral Functional Network 45
4.5. Limitations 48
Chapter 5 Conclusion and Future Work 49
5.1. Conclusion 49
5.2. Future Work 49
LIST OF FIGURES 54
LIST OF TABLES 55
Reference 56
Appendix 65
dc.language.isoen
dc.subject週邊神經系統zh_TW
dc.subject功能性磁振造影zh_TW
dc.subject靜息態功能性磁振造影zh_TW
dc.subject功能性連結zh_TW
dc.subject血氧程度相關效應zh_TW
dc.subjectfMRIen
dc.subjectPeripheral nervous systemen
dc.subjectBOLDen
dc.subjectFunctional connectivityen
dc.subjectResting-state fMRIen
dc.title以功能性磁振造影探討大腦與上臂週邊神經系統功能性連結之初步研究zh_TW
dc.titleInvestigation of the Brain-Periphery Communication: A Preliminary fMRI Studyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁庚辰,吳昌衛,林遠彬,謝松蒼,饒敦
dc.subject.keyword功能性磁振造影,靜息態功能性磁振造影,功能性連結,血氧程度相關效應,週邊神經系統,zh_TW
dc.subject.keywordfMRI,Resting-state fMRI,Functional connectivity,BOLD,Peripheral nervous system,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201602367
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved