Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學士(Shey-Shi Lu)
dc.contributor.authorWei-Heng Wangen
dc.contributor.author王偉恆zh_TW
dc.date.accessioned2021-06-15T11:38:16Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] EnergyTrend, Dec. 2015, 2015-2016年全球太陽能趨勢市場需求預測及變化 [Online]. Available: http://pv.energytrend.com.tw/research/20151211-12805.html
[2] F. A. Lindholm, J. G. Fossum, E. L. Burgess, “Application of the Superposition Principle to Solar-Cell Analysis”, IEEE Transaction on Election Device, vol. 26, no. 3, pp. 165-171, Mar. 1979
[3] Robert W. Erickson, Dragan Maksimovic, Fundamentals of Power Electronics, Second Edition, Boulder: University of Colorado, 2004
[4] Sánchez-Sinencio, Edgar, 'Low drop-out (LDO) linear regulators: design considerations and trends for high power-supply rejection (PSR)', Texas A & M University, 2110.
[5] Hazucha, Peter, et al, 'A 233-MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package', IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 838-845, April 2005.
[6] Richelli, Anna, Simone Comensoli, and Zsolt M. Kovács-Vajna, 'A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications', IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2701-2708, June 2012.
[7] Wang, Hsi-Jui, and Le-Ren Chang-Chien, 'Low cross regulation voltage-mode controlled single-inductor dual-outputs (SIDO) voltage regulator', IEEE Future Energy Electronics Conference (IFEEC), 2013 1st International, pp. 149-154, Nov. 2013.
[8] Huang, Ming-Hsin, and Ke-Horng Chen, 'Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices', IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, April 2009.
[9] Jing, Xiaocheng, Philip KT Mok, and Ming Chak Lee, 'A wide-load-range constant-charge-auto-hopping control Single-inductor-dual-output Boost regulator with minimized cross-regulation', IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2350-2362, Oct. 2011.
[10] Lee, Cheung Fai, and Philip KT Mok, 'A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique', IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[11] Du, Mengmeng, Hoi Lee, and Jin Liu, 'A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak-and valley-current control', IEEE Journal of Solid-State Circuits, vol. 46, no. 8, pp. 1928-1939, Aug. 2011.
[12] Jauregui, David, Bo Wang, and Rengang Chen, 'Power loss calculation with common source inductance consideration for synchronous buck converters', Texas Instruments, SLPA009A, June 2011.
[13] Ma, Dongsheng, Wing-Hung Ki, Chi-Ying Tsui, Philip K. T. Mok, 'Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode', IEEE Journal of Solid-State Circuits, vol. 38, no. 1 pp. 89-100, Jan. 2003.
[14] Le, Hanh-Phuc, et al, 'A single-inductor switching DC–DC converter with five outputs and ordered power-distributive control', IEEE Journal of Solid-State Circuits, vol. 42, no. 12 pp. 2706-2714, Dec. 2007.
[15] Bonizzoni, Edoardo, et al. 'A 200mA 93% peak efficiency single-inductor dual-output DC-DC buck converter', IEEE ISSCC 2007, Digest of Technical Papers, pp.526-527, Feb. 2007.
[16] Ma, Dongsheng, Wing-Hung Ki, and Chi-Ying Tsui, 'A pseudo-CCM/DCM SIMO switching converter with freewheel switching', IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, June 2003.
[17] S.-C. Koon, Y.-H. Lam and W.-H. Ki, 'Integrated charge-control single-inductor dual-output step-up/step-down converter', Proceedings-IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, pp. 3071-3074, May 2005.
[18] Woo, Young-Jin, et al, 'Load-independent control of switching dc-dc converters with freewheeling current feedback,' IEEE Journal of Solid-State Circuits, vol.43, no.12, pp.2798-2808, Dec. 2008.
[19] Huang, Ming-Hsin, Ke-Horng Chen, and Wei-Hsin Wei, 'Single-inductor dual-output DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,' IEEE 2008 Symposium on VLSI Circuits Digest of Technical Paper, 2008.
[20] Lee, Yu-Huei, et al, 'A DVS embedded power management for high efficiency integrated SoC in UWB system,' IEEE Journal of Solid-State Circuits, vol.45, no.11, pp. 2227-2238, Nov. 2010.
[21] Nakase, Yasunobu, et al, '0.5 V Start-Up 87% Efficiency 0.75 mm² On-Chip Feed-Forward Single-Inductor Dual-Output (SIDO) Boost DC-DC Converter for Battery and Solar Cell Operation Sensor Network Micro-Computer Integration', IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1933-1942, Aug. 2013.
[22] Liou, Wan-Rone, Mei-Ling Yeh, and Yueh Lung Kuo, 'A high efficiency dual-mode buck converter IC for portable applications,' IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, March 2008.
[23] R. Jacob Baker, CMOS : Circuit Design, Layout, and Simulation, New York: IEEE Press, Wiley-Interscience, pp. 529-530, 2010.
[24] Chen, Po-Hung, et al, 'Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and VTH-tuned oscillator with fixed charge programming,' IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp.1252-1260, May 2012.
[25] Tran, Canh Q., Hirosh Kawaguchi, and Takayasu Sakurai, 'Low-power high-speed level shifter design for block-level dynamic voltage scaling environment,' Proceedings-IEEE International Conference on Integrated Circuit Design and Technology (ICICDT), pp. 229-232, May 2005.
[26] Kim, Suhwan, and Gabriel A. Rincon-Mora, 'Dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control,' IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 400-401, Feb 2014.
[27] Ki, Wing-Hung, 'Signal flow graph in loop gain analysis of DC-DC PWM CCM switching converters,' IEEE Transactions on Circuits and Systems I (TCASI): Fundamental Theory and Applications, vol. 45, no. 6, pp. 644-655, June 1998.
[28] Viswanathan, Kanakasabai, Ramesh Oruganti, and Dipti Srinivasan, 'A novel tri-state boost converter with fast dynamics,' IEEE Transactions on Power Electronics, vol. 17, no. 5 pp. 677-683, Sep 2002.
[29] Ivanov, Vadim V., and Igor M. Filanovsky, Operational amplifier speed and accuracy improvement: analog circuit design with structural methodology, Vol. 763, pp. 114-116, Springer Science & Business Media, 2006.
[30] Mok, Philip KT, and Ka Nang Leung, 'Design considerations of recent advanced low-voltage low-temperature-coefficient CMOS bandgap voltage reference,' IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 635-642, 2004.
[31] Ueno, Ken, et al, 'A 300 nW, 15 ppm/C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs,' IEEE Journal of solid-state circuits, vol. 44, no.7, pp. 2047-2054, July 2009.
[32] Osaki, Yuji, et al, '1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs,' IEEE Journal of Solid-State Circuits, vol. 48, no.6, pp. 1530-1538, June 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49623-
dc.description.abstract本篇論文提出一個針對光電能源截取,及電池的低功耗單電感雙輸出之直流轉直流升壓轉換器。其中提出的前饋控制,能夠精準地調節佔空比且不需任何補償,而研究中的啟動機制能夠縮減開機時間至一百毫秒以內。此外,偽連續導通模式及自動基板電位選取電路也被應用於此轉換器中。以上的特性能夠減少對外部原件的多餘需求及成本,並且能有效地增加整體電路效率及穩定性等表現。此電路在量測上可達到74%的轉換效率、開機時間為30毫秒,且晶片面積只有1.5×1.5 mm2的大小。除此之外,此篇論文也提出一低功耗且操作於突發模式的直流轉直流降壓轉換器,及一個低壓差穩壓器搭配增益提升誤差放大器。上述這些電路架構,能夠將鋰電池充電至4.2伏特,並且同時提供一穩定的1.8伏特電壓源供訊號處理電路使用。結合這些電路設計,一個應用於光電能源截取之電源管理單元即可完成。
另一方面,為提供此電源管理單元一個穩定的參考電壓,此篇論文也提出了一個超低功耗的能隙參考電路。其中提出的參考電流和正比絕對溫度電壓產生器,能夠偕同產生一個不受溫度、電源電壓、製程所影響的1.276伏特參考電壓,且所耗功率僅有206毫微瓦特。
此晶片是以聯華電子公司零點一八微米互補式金氧半製來實現,操作電壓為1.8伏特至4.2伏特,切換頻率為100 KHz,而其他更為詳細的設計技術以及量測方式則詳見本篇論文。
zh_TW
dc.description.abstractAn on-chip low power single-inductor dual-output (SIDO) DC-DC boost converter was proposed for battery and photovoltaic energy harvesters. The proposed feed-forward control regulates the duty cycle (TON/TOFF) accurately without any compensation, and the start-up mechanism could shorten the start-up time under 100 milliseconds. Furthermore, the pseudo continuous conduction mode and the automatic body selector were also applied to this converter. These features could reduce excessive requirements and the cost of external components, which increases the performance such as higher efficiency and greater stability. The measurement result of the chip could achieve an efficiency of 74% and a start-up time of 30 ms with a small area size of simply 1.5×1.5 mm2. In addition, a low power burst mode DC-DC buck converter and a low dropout regulator with gain boosting error amplifier were also proposed. These building blocks could provide a supply voltage of 1.8V for some signal processing circuits and charge the Li-ion battery to 4.2V. As a result, a power management unit for photovoltaic energy harvesting was presented.
Besides, an ultra-low power bandgap reference was proposed to provide a robust voltage reference to PMU. The proposed proportional to absolute temperature (PTAT) generator and the current reference could generates a reference voltage of 1.276 V, which is independent of the temperature, power supply, and process technology and its power consumption is simply 206 nW.
The chip is implemented by UMC 1P6M 0.18μm process technology. The range of the operation voltage is from 1.8V to 4.2V, and switching frequency is 100 KHz. The other detailed techniques and measurements was included in this thesis, too.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:38:16Z (GMT). No. of bitstreams: 1
ntu-105-R03943109-1.pdf: 4238280 bytes, checksum: 8e432411e47ae5ae94ad6ec9e4f899c2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
誌謝 iii
中文摘要 v
ABSTRACT vii
CONTENTS ix
Lists of Figures xiii
Lists of Tables xix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 3
Chapter 2 Photovoltaic Energy Harvesting and Power Management Unit (PMU) 4
2.1 Introduction to the Energy Harvesting from a Photovoltaic Cell 4
2.2 System Architecture of the Photovoltaic Energy Harvesting and PMU 8
2.3 DC-DC Converters for Voltage Scaling 9
2.3.1 Linear Regulator 9
2.3.2 Switching Capacitor DC-DC Converter 10
2.3.3 Inductor-based switching DC-DC Converter 11
2.4 Basics of Switching DC-DC Boost Converter 12
2.4.1 The Principle of Inductor Volt-second Balance 12
2.4.2 The Principle of Capacitor Charge Balance 13
2.4.3 Fundamentals of Operation 14
2.4.3.1 Continuous Conduction Mode (CCM) 14
2.4.3.2 Discontinuous Conduction Mode (DCM) 18
2.4.4 Closed-loop Control Mechanisms 20
2.4.4.1 Pulse-Width Modulation (PWM) 21
2.4.4.2 Pulse-Frequency Modulation (PFM) 22
2.4.5 Classification by Feedback Signals 23
2.4.5.1 Voltage-Mode Control 23
2.4.5.2 Current-Mode Control 24
2.5 Significant Parameters of DC-DC Converter 26
2.5.1 Line Regulation 26
2.5.2 Load Regulation 27
2.5.3 Transient Response 27
2.5.4 Power Loss and Conversion Efficiency 29
2.6 Multiple-Output Switching DC-DC Converter 30
2.6.1 Cross Regulation 32
2.7 Summary and Conclusions 33
Chapter 3 CMOS Implementation of Photovoltaic Energy Harvesting and PMU 35
3.1 System Architecture of the Photovoltaic Energy Harvesting and PMU 36
3.2 Specification of the Boost Converter 37
3.2.1 Power Consumption of the Sub-Blocks 37
3.2.2 Specification of the PMU 38
3.2.3 Specification of the Buck Converter 40
3.2.4 Specification of the Boost Converter 41
3.3 Proposed Wide Input Range Single-Inductor Dual-Output (SIDO) DC-DC Boost Converter 43
3.3.1 Clock Generator with Feed-Forward PWM 45
3.3.2 CLK control circuit 49
3.3.3 Start-up Circuit 53
3.3.4 Body floating 55
3.3.5 CLK MUX 56
3.3.6 Simulation Results 58
3.4 Techniques to Improve Cross Regulation 65
3.4.1 Pseudo-Continuous Conduction Mode 66
3.4.2 Automatic body Selector (ABS) 69
3.4.3 Simulation Results 70
3.5 Buck Converter 75
3.6 Low Dropout Regulator (LDO) 77
3.7 Measurement Results 81
3.8 Summary and Conclusions 83
Chapter 4 Bandgap Reference 85
4.1 Fundamentals of Bandgap 85
4.2 Traditional Bandgap Reference 86
4.3 Resistor-less Voltage Reference 88
4.4 Nano-watt Resistor-less Bandgap Reference 89
4.4.1 Proportional-to-absolute-temperature (PTAT) voltage generator 90
4.4.2 Nano-Ampere Current Reference 91
4.4.3 Entire Structure 93
4.5 Simulation Results 95
4.6 Measurement Results 100
4.7 Summary and Conclusions 102
Chapter 5 Conclusions 104
Chapter 6 References 106
dc.language.isoen
dc.title應用於光電能源截取之電源管理單元zh_TW
dc.titlePower Management Unit for Photovoltaic Energy Harvestingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭盛裕(Sheng-Yu Peng),孟慶宗(Chin-Chun Meng),游世安(Shih-an Yu),孫台平(Tai-Ping Sun)
dc.subject.keyword光能截取,電源管理單元,單電感雙輸出之直流轉直流升壓轉換器,前饋控制,啟動機制,線性穩壓器,降壓轉換器,能隙參考,低功耗,zh_TW
dc.subject.keywordPhotovoltaic energy harvesting,power management unit,SIDO DC-DC boost converter,feedforward control,start-up mechanism,LDO,buck converter,bandgap reference,low power,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201602402
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved