請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝清麟 | |
| dc.contributor.author | Chia-Lin Koh | en |
| dc.contributor.author | 古佳苓 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:35:19Z | - |
| dc.date.available | 2017-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | Aho, K., Harmsen, P., Hatano, S., Marquardsen, J., Smirnov, E., & Strasser, T. (1980). Cerebrovascular disease in the community: Results of a WHO collaborative study. Bulletin of the World Health Organization, 58(1), 113-130.
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316-329. Allman, C., Amadi, U., Winkler, A. M., Wilkins, L., Filippini, N., Kischka, U., et al. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science translational medicine, 8(330), 330re331. Altschuler, E. L., Wisdom, S. B., Stone, L., Foster, C., Galasko, D., Llewellyn, D. M., & Ramachandran, V. S. (1999). Rehabilitation of hemiparesis after stroke with a mirror. Lancet, 353(9169), 2035-2036. Andersen, S. M., Rapcsak, S. Z., & Beeson, P. M. (2010). Cost function masking during normalization of brains with focal lesions: still a necessity? Neuroimage, 53(1), 78-84. Ang, K. K., Guan, C., Phua, K. S., Wang, C., Zhao, L., Teo, W. P., et al. (2015). Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 96(3 Suppl), S79-87. Avanzino, L., Teo, J. T., & Rothwell, J. C. (2007). Intracortical circuits modulate transcallosal inhibition in humans. Journal of Physiology, 583(1), 99-114. Binkofski, F., Seitz, R. J., Hacklander, T., Pawelec, D., Mau, J., & Freund, H. J. (2001). Recovery of motor functions following hemiparetic stroke: A clinical and magnetic resonance-morphometric study. Cerebrovascular Diseases, 11(3), 273-281. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, Mass.: Sinauer Associates. Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience, 25(2), 123-129. Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy, 67(2), 206-207. Buccino, G., Solodkin, A., & Small, S. L. (2006). Functions of the mirror neuron system: Implications for neurorehabilitation. Cognitive and Behavioral Neurology, 19(1), 55-63. Buffon, F., Molko, N., Herve, D., Porcher, R., Denghien, I., Pappata, S., et al. (2005). Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts. Journal of Cerebral Blood Flow and Metabolism, 25(5), 641-650. Butefisch, C. M., Davis, B. C., Wise, S. P., Sawaki, L., Kopylev, L., Classen, J., & Cohen, L. G. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3661-3665. Calautti, C., & Baron, J. C. (2003). Functional neuroimaging studies of motor recovery after stroke in adults: A review. Stroke, 34(6), 1553-1566. Calautti, C., Jones, P. S., Naccarato, M., Sharma, N., Day, D. J., Bullmore, E. T., et al. (2010). The relationship between motor deficit and primary motor cortex hemispheric activation balance after stroke: Longitudinal fMRI study. Journal of Neurology, Neurosurgery and Psychiatry, 81(7), 788-792. Calautti, C., Naccarato, M., Jones, P. S., Sharma, N., Day, D. D., Carpenter, A. T., et al. (2007). The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI study. Neuroimage, 34(1), 322-331. Cauraugh, J. H., & Kim, S. (2002). Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke, 33(6), 1589-1594. Celnik, P., Paik, N. J., Vandermeeren, Y., Dimyan, M., & Cohen, L. G. (2009). Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke, 40(5), 1764-1771. Centers for Disease Control and Prevention. (2003). Public health and aging: Hospitalizations for stroke among adults aged ≥ 65 years - United States, 2000. JAMA, 290(8), 1023-1024. Chang, M. C., Ahn, S. H., Cho, Y. W., Son, S. M., Kwon, Y. H., Lee, M. Y., et al. (2009). The comparison of cortical activation patterns by active exercise, proprioceptive input, and touch stimulation in the human brain: A functional MRI study. NeuroRehabilitation, 25(2), 87-92. Cohen, J., Cohen, P., West, S., & Aiken, L. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, N.J.: Lawrence Erlbaum Associates, Inc. Cotman, C. W., & Nieto-Sampedro, M. (1982). Brain function, synapse renewal, and plasticity. Annual Review of Psychology, 33, 371-401. Coupar, F., Pollock, A., van Wijck, F., Morris, J., & Langhorne, P. (2010). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database of Systematic Reviews, (4). Retrieved from http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD006432/frame.html. doi:10.1002/14651858.CD006432.pub2 Cramer, S. C. (2008a). Repairing the human brain after stroke. II. Restorative therapies. Annals of Neurology, 63(5), 549-560. Cramer, S. C. (2008b). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology, 63(3), 272-287. Cramer, S. C., Nelles, G., Benson, R. R., Kaplan, J. D., Parker, R. A., Kwong, K. K., et al. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28(12), 2518-2527. Cramer, S. C., & Riley, J. D. (2008). Neuroplasticity and brain repair after stroke. Current Opinion in Neurology, 21(1), 76-82. Crow, J. L., & Harmeling-van der Wel, B. C. (2008). Hierarchical properties of the motor function sections of the Fugl-Meyer assessment scale for people after stroke: a retrospective study. Physical Therapy, 88(12), 1554-1567. Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, H. I., Rogers, J. M., Goyal, K. S., et al. (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development, 42(6), 723-736. de Vries, S., & Mulder, T. (2007). Motor imagery and stroke rehabilitation: a critical discussion. Journal of Rehabilitation Medicine, 39(1), 5-13. Dechaumont-Palacin, S., Marque, P., De Boissezon, X., Castel-Lacanal, E., Carel, C., Berry, I., et al. (2008). Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study. Neurorehabilitation and Neural Repair, 22(2), 154-165. Deletis, V., Schild, J. H., Beric, A., & Dimitrijevic, M. R. (1992). Facilitation of motor evoked potentials by somatosensory afferent stimulation. Electroencephalography and Clinical Neurophysiology, 85(5), 302-310. Demetrios, M., Khan, F., Turner-Stokes, L., Brand, C., & McSweeney, S. (2013). Multidisciplinary rehabilitation following botulinum toxin and other focal intramuscular treatment for post-stroke spasticity. Cochrane Database of Systematic Reviews, 6, CD009689. Dohle, C., Pullen, J., Nakaten, A., Kust, J., Rietz, C., & Karbe, H. (2009). Mirror therapy promotes recovery from severe hemiparesis: A randomized controlled trial. Neurorehabilitation and Neural Repair, 23(3), 209-217. Duncan, P. W., Propst, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Physical Therapy, 63(10), 1606-1610. Ezendam, D., Bongers, R. M., & Jannink, M. J. (2009). Systematic review of the effectiveness of mirror therapy in upper extremity function. Disability and Rehabilitation, 31(26), 2135-2149. Fan, Y. T., Lin, K. C., Liu, H. L., Chen, Y. L., & Wu, C. Y. (2015). Changes in structural integrity are correlated with motor and functional recovery after post-stroke rehabilitation. Restorative Neurology and Neuroscience, 33(6), 835-844. Feigin, V. L., Lawes, C. M., Bennett, D. A., & Anderson, C. S. (2003). Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurology, 2(1), 43-53. Fernandez, G., de Greiff, A., von Oertzen, J., Reuber, M., Lun, S., Klaver, P., et al. (2001). Language mapping in less than 15 minutes: Real-time functional MRI during routine clinical investigation. Neuroimage, 14(3), 585-594. Finley, M. A., Fasoli, S. E., Dipietro, L., Ohlhoff, J., Macclellan, L., Meister, C., et al. (2005). Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. Journal of Rehabilitation Research and Development, 42(5), 683-692. Floel, A., Nagorsen, U., Werhahn, K. J., Ravindran, S., Birbaumer, N., Knecht, S., & Cohen, L. G. (2004). Influence of somatosensory input on motor function in patients with chronic stroke. Annals of Neurology, 56(2), 206-212. Fregni, F., Boggio, P. S., Mansur, C. G., Wagner, T., Ferreira, M. J., Lima, M. C., et al. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16(14), 1551-1555. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical Parametric Maps in functional imaging: A general linear approach. Human Brain Mapping, 2(4), 189-210. Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31. Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16(3), 232-240. Goldszmidt, A. J., & Caplan, L. R. (2010). Stroke essentials (2nd ed.). Sudbury, MA: Physicians' Press. Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., et al. (2007). Brain representation of active and passive hand movements in children. Pediatric Research, 61(4), 485-490. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J. P., Wedeen, V. J., & Meuli, R. (2006). Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 26 (Suppl 1), S205-223. Haines, D. E. (2008). Neuroanatomy: An atlas of structures, sections, and systems (7th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. Hartman-Maeir, A., Soroker, N., Ring, H., Avni, N., & Katz, N. (2007). Activities, participation and satisfaction one-year post stroke. Disability and Rehabilitation, 29(7), 559-566. Hendricks, H. T., Hageman, G., & van Limbeek, J. (1997). Prediction of recovery from upper extremity paralysis after stroke by measuring evoked potentials. Scandinavian Journal of Rehabilitation Medicine, 29(3), 155-159. Hendricks, H. T., van Limbeek, J., Geurts, A. C., & Zwarts, M. J. (2002). Motor recovery after stroke: A systematic review of the literature. Archives of Physical Medicine and Rehabilitation, 83(11), 1629-1637. Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology, 16(6), 705-710. Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966. Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W., & Kirker, S. G. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25(1), 9-15. Hsieh, C. L., Hsueh, I. P., Chiang, F. M., & Lin, P. H. (1998). Inter-rater reliability and validity of the action research arm test in stroke patients. Age and Ageing, 27(2), 107-113. Hsueh, I. P., Lee, M. M., & Hsieh, C. L. (2001). Psychometric characteristics of the Barthel activities of daily living index in stroke patients. Journal of the Formosan Medical Association, 100(8), 526-532. Hsueh, I. P., Lee, M. M., & Hsieh, C. L. (2002). The Action Research Arm Test: is it necessary for patients being tested to sit at a standardized table? Clinical Rehabilitation, 16(4), 382-388. Hsueh, I. P., Lin, J. H., Jeng, J. S., & Hsieh, C. L. (2002). Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 73(2), 188-190. Huang, C. Y., Sousa, V. D., Perng, S. J., Hwang, M. Y., Tsai, C. C., Huang, M. H., & Yao, S. Y. (2009). Stressors, social support, depressive symptoms and general health status of Taiwanese caregivers of persons with stroke or Alzheimer's disease. Journal of Clinical Nursing, 18(4), 502-511. Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional magnetic resonance imaging (2nd ed.). Sunderland, Mass.: Sinauer Associates. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490-499. Hummel, F., & Cohen, G. (2005). Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabilitation and Neural Repair, 19(1), 14-19. Hummel, F., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., & Cohen, G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neuroscience, 7, 73. Jang, S. H., Bai, D., Son, S. M., Lee, J., Kim, D. S., Sakong, J., et al. (2008). Motor outcome prediction using diffusion tensor tractography in pontine infarct. Annals of Neurology, 64(4), 460-465. Johansen-Berg, H. (2007). Functional imaging of stroke recovery: what have we learnt and where do we go from here? International Journal of Stroke, 2(1), 7-16. Johansen-Berg, H., Dawes, H., Guy, C., Smith, S. M., Wade, D. T., & Matthews, P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125(12), 2731-2742. Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D., Kischka, U., Wimalaratna, S., & Matthews, P. M. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14518-14523. Jorgensen, H. S., Nakayama, H., Raaschou, H. O., Vive-Larsen, J., Stoier, M., & Olsen, T. S. (1995). Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 76(5), 399-405. Jung, S. C., & Shin, H. C. (2002). Suppression of temporary deafferentation-induced plasticity in the primary somatosensory cortex of rats by GABA antagonist. Neuroscience Letters, 334(2), 87-90. Koh, C. L., Pan, S. L., Jeng, J. S., Chen, B. B., Wang, Y. H., Hsueh, I. P., & Hsieh, C. L. (2015). Predicting recovery of voluntary upper extremity movement in subacute stroke patients with severe upper extremity paresis. PLoS One, 10(5), e0126857. Kwon, Y. H., Ko, M. H., Ahn, S. H., Kim, Y. H., Song, J. C., Lee, C. H., et al. (2008). Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neuroscience Letters, 435(1), 56-59. Lai, S. M., Studenski, S., Duncan, P. W., & Perera, S. (2002). Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke, 33(7), 1840-1844. Landi, F., & Bernabei, R. (2003). Occupational therapy for stroke patients: When, where, and how? Stroke, 34(3), 686-687. Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534-546. Lee, Y. C., Chen, Y. M., Hsueh, I. P., Wang, Y. H., & Hsieh, C. L. (2010). The impact of stroke: Insights from patients in Taiwan. Occupational Therapy International, 17(3), 152-158. Lemon, R. N., & Porter, R. (1976). Afferent input to movement-related precentral neurones in conscious monkeys. Proceedings of the Royal Society of London. Series B: Biological Sciences, 194(1116), 313-339. Levit, K. (2008). Optimizing motor behavior using the bobath approach. In M. V. Radomski & C. A. T. Latham (Eds.), Occupational Therapy for Physical Dysfunction (6th ed., pp. 642-666). Philadelphia: Lippincott Williams & Wilkins. Liao, C. C., Li, T. C., Lin, R. S., & Sung, F. C. (2006). Urban and rural difference in prevalence and incidence of stroke in 2000 in Taiwan [Chinese]. Taiwan Journal Public Health, 25(3), 223-230. Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238-2247. Lindberg, P., Schmitz, C., Engardt, M., Forssberg, H., & Borg, J. (2007). Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients. Neurorehabilitation and Neural Repair, 21(4), 315-326. Lindberg, P., Schmitz, C., Forssberg, H., Engardt, M., & Borg, J. (2004). Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: A pilot study. Journal of Rehabilitation Medicine, 36(3), 117-123. Lindenberg, R., Renga, V., Zhu, L. L., Betzler, F., Alsop, D., & Schlaug, G. (2010). Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology, 74(4), 280-287. Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., & Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75(24), 2176-2184. Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., et al. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783. Lotze, M., Markert, J., Sauseng, P., Hoppe, J., Plewnia, C., & Gerloff, C. (2006). The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. Journal of Neuroscience, 26(22), 6096-6102. Lyle, R. C. (1981). A performance test for assessment of upper limb function in physical rehabilitation treatment and research. International Journal of Rehabilitation Research, 4(4), 483-492. Mahoney, F. I., & Barthel, D. W. (1965). Functional evaluation: The Barthel Index. Maryland State Medical Journal, 14, 61-65. Mansur, C. G., Fregni, F., Boggio, P. S., Riberto, M., Gallucci-Neto, J., Santos, C. M., et al. (2005). A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 64(10), 1802-1804. McCreery, D. B., Agnew, W. F., Yuen, T. G., & Bullara, L. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Transactions on Biomedical Engineering, 37(10), 996-1001. McDonnell, M. N., Hillier, S. L., Miles, T. S., Thompson, P. D., & Ridding, M. C. (2007). Influence of combined afferent stimulation and task-specific training following stroke: A pilot randomized controlled trial. Neurorehabilitation and Neural Repair, 21(5), 435-443. Muellbacher, W., Richards, C., Ziemann, U., Wittenberg, G., Weltz, D., Boroojerdi, B., et al. (2002). Improving hand function in chronic stroke. Archives of Neurology, 59(8), 1278-1282. Mukherjee, A., & Chakravarty, A. (2010). Spasticity Mechanisms – for the Clinician. Frontiers in Neurology, 1, 149. Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology, 55(3), 400-409. Naccarato, M., Calautti, C., Jones, P. S., Day, D. J., Carpenter, T. A., & Baron, J. C. (2006). Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage, 32(3), 1250-1256. Nakayama, H., Jorgensen, H. S., Raaschou, H. O., & Olsen, T. S. (1994). Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 75(8), 852-857. Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., & Paulus, W. (2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114(11), 2220-2222. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633-639. Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation - Update 2011. Restorative Neurology and Neuroscience, 29(6), 463-492. Nolte, J. (2009). The human brain: An introduction to its functional anatomy (6th ed.). Philadelphia, PA: Mosby/Elsevier. Nowak, D. A., Grefkes, C., Ameli, M., & Fink, G. R. (2009). Interhemispheric competition after stroke: Brain stimulation to enhance recovery of function of the affected hand. Neurorehabilitation and Neural Repair, 23(7), 641-656. Nowak, D. A., Grefkes, C., Dafotakis, M., Eickhoff, S., Kust, J., Karbe, H., & Fink, G. R. (2008). Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Archives of Neurology, 65(6), 741-747. Nudo, R. J., Jenkins, W. M., & Merzenich, M. M. (1990). Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosensory and Motor Research, 7(4), 463-483. Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272(5269), 1791-1794. Ochi, M., Saeki, S., Oda, T., Matsushima, Y., & Hachisuka, K. (2013). Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. Journal of Rehabilitation Medicine, 45(2), 137-140. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. Opheim, A., Danielsson, A., Alt Murphy, M., Persson, H. C., & Sunnerhagen, K. S. (2015). Early prediction of long-term upper limb spasticity after stroke: part of the SALGOT study. Neurology, 85(10), 873-880. Petoe, M. A., Jaque, F. A., Byblow, W. D., & Stinear, C. M. (2013). Cutaneous anesthesia of the forearm enhances sensorimotor function of the hand. Journal of Neurophysiology, 109(4), 1091-1096. Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4-6), 208-214. Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J. Y., Lazar, R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair, 22(1), 64-71. Radomski, M. V., & Trombly Latham, C. A. (2008). Occupational therapy for physical dysfunction (6th ed.). Philadelphia: Lippincott Williams & Wilkins. Ramachandran, V. S. (1994). Phantom limbs, neglect syndromes, repressed memories, and Freudian psychology. International Review of Neurobiology, 37, 291-333. Ramachandran, V. S., Rogers-Ramachandran, D., & Cobb, S. (1995). Touching the phantom limb. Nature, 377(6549), 489-490. Riecker, A., Groschel, K., Ackermann, H., Schnaudigel, S., Kassubek, J., & Kastrup, A. (2010). The role of the unaffected hemisphere in motor recovery after stroke. Human Brain Mapping, 31(7), 1017-1029. Riley, J. D., Le, V., Der-Yeghiaian, L., See, J., Newton, J. M., Ward, N. S., & Cramer, S. C. (2011). Anatomy of stroke injury predicts gains from therapy. Stroke, 42(2), 421-426. Sanchez, R. J., Liu, J., Rao, S., Shah, P., Smith, R., Rahman, T., et al. (2006). Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3), 378-389. Schaechter, J. D., Fricker, Z. P., Perdue, K. L., Helmer, K. G., Vangel, M. G., Greve, D. N., & Makris, N. (2009). Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Human Brain Mapping, 30(11), 3461-3474. Schaechter, J. D., Perdue, K. L., & Wang, R. (2008). Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage, 39(3), 1370-1382. Schlaug, G., Renga, V., & Nair, D. (2008). Transcranial direct current stimulation in stroke recovery. Archives of Neurology, 65(12), 1571-1576. Seitz, R. J., & Donnan, G. A. (2010). Role of neuroimaging in promoting long-term recovery from ischemic stroke. Journal of Magnetic Resonance Imaging, 32(4), 756-772. Shimizu, T., Hosaki, A., Hino, T., Sato, M., Komori, T., Hirai, S., & Rossini, P. M. (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain, 125(8), 1896-1907. Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37-53. Stagg, C. J., O'Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009). Modulation of movement-associated cortical activation by transcranial direct current stimulation. European Journal of Neuroscience, 30(7), 1412-1423. Stinear, C. M., Barber, P. A., Smale, P. R., Coxon, J. P., Fleming, M. K., & Byblow, W. D. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 130(1), 170-180. Takeuchi, N., Chuma, T., Matsuo, Y., Watanabe, I., & Ikoma, K. (2005). Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke, 36(12), 2681-2686. Tanaka, K., Nogawa, S., Suzuki, S., Dembo, T., & Kosakai, A. (2003). Upregulation of oligodendrocyte progenitor cells associated with restoration of mature oligodendrocytes and myelination in peri-infarct area in the rat brain. Brain Research, 989(2), 172-179. Treger, I., Shames, J., Giaquinto, S., & Ring, H. (2007). Return to work in stroke patients. Disability and Rehabilitation, 29(17), 1397-1403. Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in Medicine, 52(6), 1358-1372. van de Port, I. G., Kwakkel, G., Bruin, M., & Lindeman, E. (2007). Determinants of depression in chronic stroke: A prospective cohort study. Disability and Rehabilitation, 29(5), 353-358. Vestling, M., Tufvesson, B., & Iwarsson, S. (2003). Indicators for return to work after stroke and the importance of work for subjective well-being and life satisfaction. Journal of Rehabilitation Medicine, 35(3), 127-131. Ward, N. S. (2015). Does neuroimaging help to deliver better recovery of movement after stroke? Current Opinion in Neurology, 28(4), 323-329. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003). Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain, 126(6), 1430-1448. Ward, N. S., Brown, M. M., Thompson, A. J., Frackowiak, R. S., Ward, N. S., Brown, M. M., et al. (2006). Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: An FMRI study. Neurorehabilitation and Neural Repair, 20(3), 398-405. Ward, N. S., & Cohen, L. G. (2004). Mechanisms underlying recovery of motor function after stroke. Archives of Neurology, 61(12), 1844-1848. Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine, 54(6), 1377-1386. Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., et al. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267-1277. Weiss, T., Sens, E., Teschner, U., Meissner, W., Preul, C., Witte, O. W., & Miltner, W. H. (2011). Deafferentation of the affected arm: A method to improve rehabilitation? Stroke, 42(5), 1363-1370. Werhahn, K. J., Mortensen, J., Kaelin-Lang, A., Boroojerdi, B., & Cohen, L. G. (2002). Cortical excitability changes induced by deafferentation of the contralateral hemisphere. Brain, 125(6), 1402-1413. Wohlin Wottrich, A., Stenstrom, C. H., Engardt, M., Tham, K., & von Koch, L. (2004). Characteristics of physiotherapy sessions from the patient's and therapist's perspective. Disability and Rehabilitation, 26(20), 1198-1205. Woodruff, C. C., & Maaske, S. (2010). Action execution engages human mirror neuron system more than action observation. Neuroreport, 21(6), 432-435. Wu, H. C., Lin, Y. C., Hsu, M. J., Liu, S. M., Hsieh, C. L., & Lin, J. H. (2010). Effect of thermal stimulation on upper extremity motor recovery 3 months after stroke. Stroke, 41(10), 2378-2380. Yuen, T. G., Agnew, W. F., Bullara, L. A., Jacques, S., & McCreery, D. B. (1981). Histological evaluation of neural damage from electrical stimulation: Considerations for the selection of parameters for clinical application. Neurosurgery, 9(3), 292-299. 行政院衛生署. (2009). 98年度死因統計完整統計表. Retrieved from http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11397&level_no=-1&doc_no=76512 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49570 | - |
| dc.description.abstract | 背景與目的
有效復原患側手部動作與功能,是中風復健領域之重大挑戰,然而目前針對嚴重至中度上肢動作損傷之中風患者,臨床療效仍不彰。Nick Ward與Leonardo Cohen二位學者提出中風後動作復原潛在機制之參考架構,並建議5種治療策略:包含(1)降低健側肢體遠端之感覺輸入;(2)增加患側肢體遠端之感覺輸入;(3)降低患側肢體近端之感覺輸入;(4)強化患側腦動作皮質的活化;(5)調降健側腦動作皮質的活化。近期研究發現各別策略於上肢中、輕度損傷之患者具備療效潛能。由於研究證據支持結合多種治療較單一治療更有助於中風患者的動作復原,故發展同時結合上述5種策略之「經顱直流電刺激結合感覺輸入調節治療模式(Transcranial direct current stimulation with sensory modulation intervention,tDCS-SM)」,應具備最大潛能促進長期嚴重上肢動作損傷患者之動作復原,然tDCS-SM之立即及長期追蹤療效尚待驗證。 此外,本研究採用2種影像技術來驗證 tDCS-SM療效的可能機制,包含水分子擴散頻譜影像(diffusion spectrum image,DSI)及功能性磁振造影(functional meganetic resonance image,fMRI)。此2種影像分別驗證個案之大腦白質結構與皮質活化之變化。 本論文之研究目的為:(1) 驗證tDCS-SM於嚴重至中度上肢動作損傷患者之療效;(2)應用醫學影像技術驗證tDCS-SM之療效機制。 研究方法 本研究以雙盲隨機分配試驗,驗證tDCS-SM之療效。共募集25位慢性期嚴重至中度上肢動作損傷之中風患者,並以電腦亂數表將個案隨機分配至2組。其中14位分配至實驗組接受tDCS-SM治療,包含患側手被動重複動作訓練、雙側經顱直流電刺激(transcranial direct current stimulation, tDCS)及患側手近端與健側手遠端表皮麻醉。11位分配至控制組治療,包含患側手被動重複動作訓練、假性(sham)雙側tDCS刺激及假性患側手近端與健側手遠端表皮麻醉。每組所接受的治療量均相同,並接受4次(治療前、治療後、治療後3個月及治療後6個月)臨床行為療效評估。臨床行為療效評估內容包含:上肢自主動作、上肢肌肉張力、上肢功能評量與基本日常生活功能。本研究採用意向處理分析(intention-to-treat)的原則驗證療效。tDCS-SM與控制組之療效差異,以ANCOVA分析,並控制個案治療前初始分數的差異。療效效應值(effect size)為依據共變數分析所得之partial eta-square(ηp2)大小進行判斷。 另外,符合收案條件之缺血性中風患者(n = 13),在治療前後1週內除前述臨床行為療效評估外,亦進行DSI與fMRI之影像掃描。以DSI技術重建上肢皮質脊髓徑(corticospianl tract to upper extremity,CST-UE)與胼胝體運動纖維(callosal motor fiber,CMF)。CST-UE又區分為2個分段,以瞭解不同位置之CST結構情形:(1)CST-UEABOVE:CST-UE由內囊後肢以上至主要運動皮質區灰白質交界處的分段;(2)CST-UEPLIC:單純內囊後肢的分段。每個神經束分段,分別計算其患側、健側之平均綜合非等向性指標值(mean generalized fractional anisotropy, mGFA)與側化指標(laterality index,LI),以驗證神經束之結構變化,並以曼-惠特尼U檢定(Mann-Whitney U test)驗證兩組間是否有差異。 fMRI掃描採區集設計(block design),掃描時所有個案進行被動手指伸展的活動。由具備核磁相容性之氣動儀帶動個案手指進行快速之被動掌指關節伸直(metacarpophalangeal joint extension)動作,手指活動頻率為2Hz。分析以SPM8軟體進行,先完成個別個案之む治療後 – 治療前め對比影像分析,再比較tDCS組與控制組組間之む治療後 – 治療前め對比影像之訊號強度有顯著差異之區域。顯著之統計檢定值為 p < 0.001 (未校正法)。 結果 上肢自主動作結果發現tDCS-SM相較控制組有中度立即療效(ηp2 = 0.14),且tDCS-SM之療效可持續至治療後6個月(ηp2 = 0.12)。在降低上肢肌肉痙攣上,tDCS-SM相對控制組有低度立即療效(ηp2 = 0.04)。3個月與6個月追蹤評估時,則為控制組優於tDCS-SM組,具低度療效差異(ηp2 = 0.03 - 0.09)或無差異。上肢功能方面,tDCS-SM相對控制組有低度立即療效(ηp2 = 0.02),3個月與6個月追蹤評估結果為,tDCS-SM相對控制組有低度療效(ηp2 = 0.04 - 0.09)。基本日常功能方面,tDCS-SM相對控制組有低度立即療效(ηp2 = 0.02),3個月時,兩組療效無差異,至6個月追蹤評估時,tDCS-SM相對控制組有低度療(ηp2 = 0.09)。 比較治療前後神經束結構指標改變量,CST-UEABOVE LI、患側CST-UEABOVE mGFA與健側CST-UEABOVE mGFA,tDCS-SM組與控制組皆無顯著差異(p = 1.000)。但CST-UEPLIC LI、健側CST-UEPLIC mGFA,在兩組間有顯著差異(p = 0.038)。患側CST-UEPLIC mGFA結果,兩組間無顯著差異(p = 0.461)。CMF因多數個案無法成功重建,使得控制組只有1個有效數值,樣本數過低,不進行統計推論。 fMRI結果,未發現兩組間之治療前後皮質活化變化,有任何顯著不同之腦區。各組別來看,tDCS-SM組治療後,在患側腦中央後回(postcentral gyrus)與雙側腦的旁中央小葉(paracentral lobule)活化降低。控制組在治療後發現,患側腦中央後回與健側腦中央前回(precentral gyrus)活化降低。 結論 結合5策略之tDCS-SM相較於僅給予患側手被動動作訓練,更可以促進慢性期嚴重至中度上肢動作損傷中風患者的上肢自主動作復原,且其療效可持續至治療後6個月。在降低上肢肌痙攣方面,tDCS-SM顯示具備立即療效,但無長期療效。而tDCS-SM對上肢動作復原之療效,尚不足以有效轉化為促進嚴重至中度上肢動作損傷患者之手功能及基本日常生活功能。最後,本研究發現tDCS-SM可能可阻止或延緩患者之腦部運動相關神經纖維結構持續被破壞,同時降低患側腦感覺皮質之活性。整體而言,tDCS-SM有潛力應用於嚴重至中度損傷之中風患者,以改善其上肢動作,但療效相關之神經復原機制仍須後續驗證。 | zh_TW |
| dc.description.abstract | Backgroud and purposes
Up to 60% of people with stroke suffered from severe to moderate long-term upper extremity(UE)motor impairment. The deficits of UE can greatly impact patients‘ daily living independence and quality of life. However, treatment effect of current interventions is still limited. Nick Ward and Leonardo Cohen suggested 5 intervention strategies for stroke motor recovery:(1)reduction of somatosensory input from the intact;(2)increase in somatosensory input from the paretic;(3)anesthesia of a body part proximal to the paretic hand;(4)activity within the affected motor cortex may be up-regulated;(5)activity within the intact motor cortex may be down-regulated. Recent studies have shown each strategy to be effective in stroke patients with mild or moderate UE impairment. However, evidence for people with severe UE impairment after stroke remains unclear. Since research has found a greater effect for combined strategies than a single strategy, this proposal develops a combined intervention with the above 5 strategies, named Transcranial direct current stimulation with sensory modulation intervention (tDCS-SM). tDCS-SM is expected to be most effective for people with severe UE impairment after stroke. In addition, neuroimaging can provide in vivo information about the brain plasticity which underpinning the motor recovery after stroke. However, image indexes that can be used in stroke patients with severe UE impairment remained examined. Therefore, this study aimed to examined whether a multi-strategy intervention (i.e., tDCS-SM) enhanced motor outcome immediately and longitudinally in patients with chronic severe to moderate upper extremity paresis. In addition, the underline mechanism of the tDCS-SM’s efficacy was examined using neuroimaging technology. Methods A total of 25 stroke participants were randomly assigned to either a transcranial direct current stimulation with sensory modulation (tDCS-SM) group or a control group for an 8-week intervention. The tDCS-SM group (n = 14) received bilateral tDCS stimulation, bilateral cutaneous anesthesia, and high repetitions of passive movements on the paretic hand. The control group (n = 11) received the same repetitive passive motor training but with sham tDCS and sham anesthesia. Outcomes were assessed at baseline, at post-intervention, and at 3- and 6-month follow-ups. All enrolled participants who were diagnosed as ischemic stroke received diffusion spectrum and functional magnetic resonance imaging at 3T. Corticospinal tract (CST) and callosal motor fiber (CMF) integrity was assessed by measuring the mean generalized fractional anisotropy (mGFA) of the reconstructed tracts. The CST tractogram was segmented from the internal capsule to the motor cortex (CSTABOVE) and the internal capsule parts only (CSTPLIC). The CMF tractogram was segmented from the mid-sagittal plane to the motor cortex. For the functional magnetic resonance imaging, all participants received passive finger extension movemnt during scanning. Data were analyzed with SPM99. Results The Fugl-Meyer motor score improved more in the tDCS-SM group than in the control group, with a moderate between-group effect size (partial η2, ηp2 = 0.14), and long-term effects of tDCS-SM were found (ηp2 =0.17 and 0.12). The tDCS-SM group exhibited a slightly better immediate effect (ηp2 = 0.02 – 0.04) on reducing spasticity than the control group, but no long-term effect. Small immediate and long-term treatment effects of tDCS-SM were found on hand function and daily function recovery (ηp2 = 0.02 - 0.09). No difference between groups was found for the lateraliry index and the mGFA of CSTABOVE. Significant differences between groups were found for the mGFA and the laterality index of the unaffected CSTPLIC. The control group showed a large decrease of mGFA at the unaffected CSTPLIC. The CMF integrity was not compared due to limited no sufficient case number in the control group. Conclusion tDCS-SM showed better immediate and long-term effects on voluntary UE movement recovery than intensive passive movement intervention. The effects of tDCS-SM on spasticity control and functional changes were found in the short term but not in the long term in patients with severe to moderate UE paresis. For ischemic stroke, the tDCS-SM maintained the unaffected CST structural integrity from being degenerated. The results of this study suggested that the tDCS-SM has potential to improve UE motor recovery in patients with severe to moderate UE paresis, however, the treatment effects of tDCS-SM to improve patients‘ functional recovery were still limited. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:35:19Z (GMT). No. of bitstreams: 1 ntu-105-D97429002-1.pdf: 4586531 bytes, checksum: b6999ebd6edbc52f9e8809b08dc6bdff (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 第 1 章 中風與病後上肢動作損傷及其影響 1
中風之病理學簡介 1 中風之流行病學 1 中風的定義 1 中風病因之分類 2 中風後上肢動作損傷是臨床之重要挑戰 3 嚴重上肢動作損傷之發生率 3 嚴重上肢動作損傷對患者之影響 3 嚴重上肢動作損傷對臨床人員的挑戰 5 總結 5 第 2 章 WARD與COHEN中風動作復原潛在機制參考架構 7 策略1:降低健側肢體遠端的感覺輸入 7 策略2:增加患側肢體遠端的感覺輸入 7 被動重複動作訓練(repetitive passive motor training) 7 機器輔助訓練(robot-assisted training) 9 鏡像治療(mirror therapy, MT) 11 策略3:減少患側肢體近端的感覺輸入 12 策略4:增加損傷腦側動作皮質的活化 13 策略5:抑制損傷腦側動作皮質的活化 13 經顱直流電刺激術(transcranial direct current stimulation, tDCS) 13 各治療模式成效與臨床使用議題之比較 16 第 3 章 中風患者上肢動作復原相關之大腦可塑性研究 19 DTI及其於中風研究之發現 19 DTI及其量性指標之簡介 19 皮質脊髓徑結構完整性與中風患者上肢動作能力有關 20 中風後之CST結構改變 21 功能性磁振造影及其於中風研究之發現 22 功能性磁振造影簡介 22 感覺運動皮質區之活化側化現象及其量性指標 22 感覺運動皮質區活化側化現象與中風後上肢動作復原程度有關 23 WARD與COHEN參考架構各策略之FMRI發現 25 表皮局部麻醉(策略1與3) 25 患側肢體感覺輸入(策略2) 25 tDCS (策略4與5) 25 總結 26 第 4 章 「經顱直流電刺激結合感覺調節治療模式」設計與隨機分配試驗:臨床行為療效評估結果 29 研究目的 29 研究假設 30 方法 31 樣本 31 研究程序與雙盲研究設計 32 「經顱直流電刺激結合感覺調節治療模式」之設計 32 被動重複動作訓練(策略2)內容 33 表皮局部麻醉(策略1、3)內容 33 tDCS刺激(策略4、5)內容 34 控制組治療模式 34 評量內容 35 基本資料 35 主要療效評量 35 次要療效評量 35 資料分析 36 樣本數計算 37 結果 37 試驗個案募集結果 37 tDCS-SM組與假性tDCS-SM組的基本與初始資料比較 38 基本人口學資料比較 38 主要療效評量之初評結果 38 次要療效評量之初評結果 38 主要療效評量之立即與長期追蹤療效 38 FMA-UE上肢動作分數 39 肌肉張力(MAS) 39 次要療效評量之立即與長期追蹤療效 41 上肢功能(ARAT) 41 基本日常功能(BI) 41 結果小結 42 第 5 章 TDCS-SM對之大腦塑性機制驗證 43 研究目的 43 研究假設 43 方法 43 樣本 43 影像掃描流程及分析 44 影像掃描 44 DSI資料處理與分析 45 DSI 神經追蹤術(tractography) 45 神經束結構完整性的量性指標 46 比較兩組間神經束結構完整性的量性指標 46 fMRI活動設計 47 fMRI資料處理與分析 47 結果 49 DSI:神經束結構完整性指標 49 CST側化指標 49 患側腦CST結構 50 健側腦CST結構 50 CMF結構 50 fMRI:大腦皮質活化反應 50 結果小結 51 第 6 章 綜合討論與結論 53 TDCS-SM較單獨動作訓練可促進患側上肢動作復原 53 TDCS-SM較單獨動作訓練有助於短期降低肌肉張力 53 TDCS-SM之效益於上肢遠端大於上肢近端 54 TDCS-SM促進上肢動作復原之可能機制 55 DSI:CST-UE側化指標在控制組相對tDCS-SM組有顯著變化 55 DSI:患側 CST-UE結構未因治療改變 56 DSI:健側CST-UE結構在tDCS-SM組不變但控制組變差 57 fMRI:感覺區與健側運動區活化降低 57 TDCS-SM對功能性活動之療效有限 58 手功能 58 基本日常生活功能 59 TDCS-SM 的不良反應 59 研究限制 60 未來發展 60 結論 61 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 復原機制 | zh_TW |
| dc.subject | 中風 | zh_TW |
| dc.subject | 上肢動作 | zh_TW |
| dc.subject | 腦刺激 | zh_TW |
| dc.subject | 被動動作訓練 | zh_TW |
| dc.subject | stroke | en |
| dc.subject | recovery mechanism | en |
| dc.subject | passive motor training | en |
| dc.subject | brain stimulation | en |
| dc.subject | upper extremity | en |
| dc.title | 「經顱直流電刺激結合感覺輸入調節治療模式」於慢性中風患者上肢動作復原之療效與機制驗證 | zh_TW |
| dc.title | Transcranial direct current stimulation with sensory modulation intervention (tDCS-SM): Treatment effects and underlining mechanisms in patients with severe to moderate upper extremity paresis after stroke | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林昭宏,曾文毅,黃小玲,鄭建興 | |
| dc.subject.keyword | 中風,上肢動作,腦刺激,被動動作訓練,復原機制, | zh_TW |
| dc.subject.keyword | stroke,upper extremity,brain stimulation,passive motor training,recovery mechanism, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201602775 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 職能治療研究所 | zh_TW |
| 顯示於系所單位: | 職能治療學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
