請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49566完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘俊良 | |
| dc.contributor.author | Kwei-Yan Liu | en |
| dc.contributor.author | 劉奎延 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:35:06Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | Arata, Y., Kouike, H., Zhang, Y., Herman, M.A., Okano, H., Sawa, H., 2006. Wnt signaling and a Hox protein cooperatively regulate psa-3/Meis to determine daughter cell fate after asymmetric cell division in C. elegans. Dev Cell 11, 105-115.
Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., Basler, K., 2006. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509-522. Betschinger, J., Mechtler, K., Knoblich, J.A., 2003. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326-330. Betschinger, J., Mechtler, K., Knoblich, J.A., 2006. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241-1253. Bosher, J.M., Dufourcq, P., Sookhareea, S., Labouesse, M., 1999. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon. Genetics 153, 1245-1256. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D.T., Kemphues, K.J., 1996. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075-3084. Calvo, D., Victor, M., Gay, F., Sui, G., Luke, M.P., Dufourcq, P., Wen, G., Maduro, M., Rothman, J., Shi, Y., 2001. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO J 20, 7197-7208. Cheeks, R.J., Canman, J.C., Gabriel, W.N., Meyer, N., Strome, S., Goldstein, B., 2004. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 14, 851-862. Cochella, L., Hobert, O., 2012. Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell 151, 1229-1242. Dufourcq, P., Chanal, P., Vicaire, S., Camut, E., Quintin, S., den Boer, B.G., Bosher, J.M., Labouesse, M., 1999. lir-2, lir-1 and lin-26 encode a new class of zinc-finger proteins and are organized in two overlapping operons both in Caenorhabditis elegans and in Caenorhabditis briggsae. Genetics 152, 221-235. Etemad-Moghadam, B., Guo, S., Kemphues, K.J., 1995. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743-752. Finney, M., Ruvkun, G., 1990. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63, 895-905. Goldstein, B., Macara, I.G., 2007. The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13, 609-622. Gotta, M., Abraham, M.C., Ahringer, J., 2001. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11, 482-488. Guo, S., Kemphues, K.J., 1996. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455-458. Herman, M.A., Horvitz, H.R., 1994. The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development 120, 1035-1047. Herman, M.A., Vassilieva, L.L., Horvitz, H.R., Shaw, J.E., Herman, R.K., 1995. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 83, 101-110. Horvitz, H.R., Herskowitz, I., 1992. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237-255. Hung, T.J., Kemphues, K.J., 1999. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127-135. Ikeshima-Kataoka, H., Skeath, J.B., Nabeshima, Y., Doe, C.Q., Matsuzaki, F., 1997. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625-629. Jackson, B.M., Eisenmann, D.M., 2012. beta-catenin-dependent Wnt signaling in C. elegans: teaching an old dog a new trick. Cold Spring Harb Perspect Biol 4, a007948. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., Ahringer, J., 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, RESEARCH0002. Kemphues, K.J., Priess, J.R., Morton, D.G., Cheng, N.S., 1988. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311-320. Klaus, A., Birchmeier, W., 2008. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8, 387-398. Kohwi, M., Doe, C.Q., 2013. Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 14, 823-838. Kohwi, M., Lupton, J.R., Lai, S.L., Miller, M.R., Doe, C.Q., 2013. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152, 97-108. Labouesse, M., Hartwieg, E., Horvitz, H.R., 1996. The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development 122, 2579-2588. Labouesse, M., Sookhareea, S., Horvitz, H.R., 1994. The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development 120, 2359-2368. Lee, C.Y., Wilkinson, B.D., Siegrist, S.E., Wharton, R.P., Doe, C.Q., 2006. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 10, 441-449. Lin, R., Hill, R.J., Priess, J.R., 1998. POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92, 229-239. Lo, M.C., Gay, F., Odom, R., Shi, Y., Lin, R., 2004. Phosphorylation by the beta-catenin/MAPK complex promotes 14-3-3-mediated nuclear export of TCF/POP-1 in signal-responsive cells in C. elegans. Cell 117, 95-106. Lu, B., Rothenberg, M., Jan, L.Y., Jan, Y.N., 1998. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225-235. Maloof, J.N., Whangbo, J., Harris, J.M., Jongeward, G.D., Kenyon, C., 1999. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37-49. Mizumoto, K., Sawa, H., 2007. Cortical beta-catenin and APC regulate asymmetric nuclear beta-catenin localization during asymmetric cell division in C. elegans. Dev Cell 12, 287-299. Nakamura, K., Kim, S., Ishidate, T., Bei, Y., Pang, K., Shirayama, M., Trzepacz, C., Brownell, D.R., Mello, C.C., 2005. Wnt signaling drives WRM-1/beta-catenin asymmetries in early C. elegans embryos. Genes Dev 19, 1749-1754. Natarajan, L., Jackson, B.M., Szyleyko, E., Eisenmann, D.M., 2004. Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1. Dev Biol 272, 536-557. Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K., Varmus, H., 1984. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131-136. Pan, C.L., Howell, J.E., Clark, S.G., Hilliard, M., Cordes, S., Bargmann, C.I., Garriga, G., 2006. Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell 10, 367-377. Phillips, B.T., Kidd, A.R., 3rd, King, R., Hardin, J., Kimble, J., 2007. Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 104, 3231-3236. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., Nusse, R., 1987. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657. Rose, L.S., Kemphues, K., 1998. The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo. Development 125, 1337-1346. Sawa, H., Korswagen, H.C., 2013. Wnt signaling in C. elegans. WormBook, 1-30. Schaefer, M., Shevchenko, A., Shevchenko, A., Knoblich, J.A., 2000. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 10, 353-362. Schneider, S.Q., Bowerman, B., 2003. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu Rev Genet 37, 221-249. Schneider, S.Q., Bowerman, B., 2007. beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13, 73-86. Schober, M., Schaefer, M., Knoblich, J.A., 1999. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548-551. Schubert, C.M., Lin, R., de Vries, C.J., Plasterk, R.H., Priess, J.R., 2000. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5, 671-682. Shaham, S., Horvitz, H.R., 1996. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10, 578-591. Shetty, P., Lo, M.C., Robertson, S.M., Lin, R., 2005. C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 285, 584-592. Siegfried, K.R., Kimble, J., 2002. POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129, 443-453. Siller, K.H., Cabernard, C., Doe, C.Q., 2006. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8, 594-600. Spana, E.P., Kopczynski, C., Goodman, C.S., Doe, C.Q., 1995. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121, 3489-3494. Sternberg, P.W., Horvitz, H.R., 1988. lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Dev Biol 130, 67-73. Sugioka, K., Mizumoto, K., Sawa, H., 2011. Wnt regulates spindle asymmetry to generate asymmetric nuclear beta-catenin in C. elegans. Cell 146, 942-954. Thorpe, C.J., Schlesinger, A., Carter, J.C., Bowerman, B., 1997. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695-705. Tsou, M.F., Hayashi, A., DeBella, L.R., McGrath, G., Rose, L.S., 2002. LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos. Development 129, 4469-4481. Wallenfang, M.R., Seydoux, G., 2000. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408, 89-92. Walston, T., Guo, C., Proenca, R., Wu, M., Herman, M., Hardin, J., Hedgecock, E., 2006. mig-5/Dsh controls cell fate determination and cell migration in C. elegans. Dev Biol 298, 485-497. Wodarz, A., Ramrath, A., Kuchinke, U., Knust, E., 1999. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544-547. Xue, D., Tu, Y., Chalfie, M., 1993. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science 261, 1324-1328. Yu, F., Morin, X., Cai, Y., Yang, X., Chia, W., 2000. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399-409. Zinovyeva, A.Y., Forrester, W.C., 2005. The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Dev Biol 285, 447-461. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49566 | - |
| dc.description.abstract | 不對稱細胞分裂可以增加細胞的多樣性,對擁有許多不同種類細胞的神經系統來說至關重要。Wnt-Frizzled 訊息路徑是調控不對稱細胞分裂的重要因子。在線蟲中,V5 側縫細胞系會產生,身體兩側各一個PVD痛覺神經細胞,而lin-17/Frizzled 突變造成PVD數目異常增加。我們的研究顯示,lin-17 和Wnt基因的突變導致V5.pa母細胞產生對稱而非不對稱的分裂,進而使神經膠質母細胞被轉化成神經母細胞。我們發現許多 Wnt 訊息傳遞路徑的基因都影響PVD的分化,而Wnt 訊號的分布方向能引導細胞不對稱分裂的極性。我們發現控制真皮細胞和神經膠細胞分化的C2H2轉錄因子LIN-26,其在神經膠母細胞中的表現量在lin-17突變株中明顯減少。利用RNA干擾技術,我們發現 lin-26和同屬於lin-26操縱子的另一類似基因lir-1在決定V5.pa細胞系性狀分化上的重要性,尤其lin-17突變的狀態下,失去lin-26或lir-1都會產生更多PVD神經細胞。除此之外,lin-17與mom-5/Frizzled同時突變時,側縫細胞大量消失且造成極度異常的PVD數目。這個結果表示Frizzled在調控不對稱細胞分裂中的重要性,並證明其透過影響lin-26/lir-1操縱子的表現而引導神經膠細胞與外皮層細胞的分化,以防止神經細胞異常的產生。 | zh_TW |
| dc.description.abstract | Wnt-Frizzled signaling is an important regulator of asymmetric cell division that increases cellular diversity. In the nematode Caenorhabditis elegans, mutations in lin-17/Frizzled resulted in supernumerary PVDs, one of the two postdeirid neurons generated by the V5 seam cell lineage. The asymmetric division of the V5.pa, which generated the neuroblast and the glioblast of the postdeirid, was often disrupted in the lin-17 and Wnt mutants. We identified multiple Wnt pathway genes that controlled PVD specification, and showed that Wnts instructed the asymmetry of cell division. Interestingly, expression of lin-26, a C2H2 transcription factor critical for hypodermal and glial cell specification, was significantly diminished in the postdeirid glial lineage of the lin-17 mutant. Reduced activity of lin-26 or lir-1, a lin-26-like gene encoded by the lir-1/lin-26 operon, resulted in supernumerary PVDs and enhanced lin-17 mutant phenotypes. Moreover, combining mutations of lin-17 and another Frizzled, mom-5, resulted in substantial loss of seam cells and extremely aberrant PVD numbers. These results support a model in which Frizzled couples asymmetric cell division to a switch in lin-26/lir-1 transcriptional activity to promote glial or epidermal fates against an otherwise differentiation program towards neurons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:35:06Z (GMT). No. of bitstreams: 1 ntu-105-D98448010-1.pdf: 9639313 bytes, checksum: e6d52a7b7c48cef57c247a9311cbf7b7 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
ACKNOWLEDGEMENT i IMPORTANT NOTICE iii 中文摘要 iv ABSTRACT v CONTENTS vi Chapter 1 INTRODUCTION 1 1.1 Asymmetric Cell Division 1 1.1.1 Asymmetric Cell Division Coupled with Cell Fate Determination 1 1.1.2 Asymmetric Cell Division in C. elegans 2 1.1.3 Asymmetric Cell Division in the Drosophila Nervous System 4 1.2 Wnt Signals in Asymmetric Cell Division and Cell Fate Determination 6 1.2.1 Overview of Wnt Signaling Pathways 6 1.2.2 Wnt Pathways in C. elegans 7 1.2.3 Wnt Signaling Regulates Asymmetric Cell Divisions in C. elegans 8 1.3 Cell Fate Diversification by Reiterative β-Catenin Asymmetry 11 Chapter 2 MATERIALS and METHODS 15 2.1 C. elegans Mutants and Transgenes 15 2.2 Quantification of PVD and PDE Neurons 16 2.3 Confocal Microscopy of the PVD Neuron 16 2.4 Temperature-Shift Experiments 17 2.5 Molecular Biology and Plasmid Construction 17 2.6 RNA Interference by Feeding 17 2.7 Imaging and Quantification of V5 Division and Expression of POP-1 or lin-26 18 2.8 Immunofluorescence Microscopy 19 2.9 RNA Isolation 19 2.10 Reverse Transcription 20 2.11 Quantitative Real-Time PCR(qRT-PCR) 20 2.12 Chromatin Immunoprecipitation 20 Chapter 3 RESULTS 21 3.1 Mutations in lin-17/Frizzled Caused PVD Duplication 21 3.2 Mutations in the Wnt/β-catenin Asymmetry Pathway Produced Extra PVD Neurons 22 3.3 Defects in Neuroblast Division Occurred at Multiple Levels of the V5 Lineage in the lin-17 Mutant 23 3.4 lin-17 Controls Cell Fate, Rather than Apoptosis, of V5.paapp 24 3.5 Wnt-Frizzled Signaling Regulates Asymmetric V5.pa and V5.paap Divisions 25 3.6 lin-17 was Expressed and Acted in the V5 lineage to Control Asymmetric Cell Divisions 26 3.7 Directional Wnt Signals are Required for Asymmetric Divisions of the V5 Lineage 26 3.8 Wnt-Frizzled Signaling Regulates Nuclear POP-1 Asymmetry between the Daughter Cells of V5.pa or V5.paap 27 3.9 Loss of lin-26 and lir-1 C2H2 Transcription Factors Resulted in Extra PVDs 27 3.10 Wnt-Frizzled Signaling Controls lir-1/lin-26 Expression 29 3.11 Extremely Aberrant Numbers of Postdeirid Neurons in the Double Frizzled Mutants Associated with Extensive Seam Cell Loss 30 Chapter 4 DISCUSSION 33 4.1 POP-1 Asymmetry and Cell Fate Specification 33 4.2 lin-26 and lir-1 Are Potential Targets of Wnt/ Frizzled Signaling 34 4.3 Concluding Remarks 36 Chapter 5 FIGURES 37 Chapter 6 SUPPLEMENTARY TABLE 93 Chapter 7 REFERENCE 95 | |
| dc.language.iso | en | |
| dc.subject | Wnt訊息 | zh_TW |
| dc.subject | 線蟲 | zh_TW |
| dc.subject | 不對稱細胞分裂 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | 神經 | zh_TW |
| dc.subject | cell fate determination | en |
| dc.subject | Wnt signaling | en |
| dc.subject | neuron | en |
| dc.subject | C. elegant | en |
| dc.subject | asymmetric cell division | en |
| dc.title | 線蟲Wnt Signaling調控不對稱分裂與細胞分化 | zh_TW |
| dc.title | Regulation of Asymmetric Division and Cell Fate Determination by C. elegans Wnt-Frizzled Signaling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 簡正鼎,皮海薇,吳益群,李秀香 | |
| dc.subject.keyword | 線蟲,不對稱細胞分裂,細胞分化,神經,Wnt訊息, | zh_TW |
| dc.subject.keyword | C. elegant,asymmetric cell division,cell fate determination,neuron,Wnt signaling, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201602876 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 9.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
