請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49565完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯(Louis Ge) | |
| dc.contributor.author | Marvin Eduardo Rodríguez Marcía | en |
| dc.contributor.author | 神龍 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:35:03Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | 1. Daniels, K. et. al. (2016). Photoelastic force measurements in granular materials. Department of Physics, North Carolina State University, Raleigh, NC, USA. 2. Phillips, J. W. (1998). Experimental stress analysis. University of Illinois at Urbana-Campaign, USA. 3. Measurements Group, Inc. Photoelastic Division. (1998). Instructions for Machining Two-Dimensional Models from PSM-1. Instruction Bulletin IB-201-A. Raleigh, NC, USA. 4. Estep, Joseph J. (2011). Substrate effects from force chain dynamics in dense granular flows. Georgia Institute of Technology, GA, USA. 5. Zheng, H., Wang, D., and Behringer, R. P. (2019). Experimental study on granular biaxial test based on photoelastic technique. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, SH, CN. 6. Zadeh, A. et. al. (2019). Enlightening force chains: a review of photoelasticimetry in granular matter. Department of Physics Center of Nonlinear and Complex Systems, Duke University, Durham, NC, USA. 7. Doyle, J. F., and Phillips, J. W. (1998). Manual on experimental stress analysis. Society for Experimental Mechanics. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. 8. Gonzales, R. and Woods, R. (2003). Digital Image Processing. Addison-Wesley Publishing Company, 1992, pp 81-125. 9. Kim, Seong-Hoon and Han, Gi-Tae. (2014). A Novel Eyelashes Removal Method for Improving Iris Data Preservation Rate. KIPS Transactions on Software and Data Engineering. 3. 429-440. 10.3745/KTSDE.2014.3.10.429. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49565 | - |
| dc.description.abstract | 在二十世紀,光彈性現像是由蘇格蘭物理學家戴維·布魯斯特(David Brewster)發現的。在合作中Coker和L.N.G. Filon,開發了許多實驗框架。隨著時間的流逝,這項技術和所使用的設備變得更加簡單和完善。自從它成為定性和定量應力分析的可行技術以來,它已經在包括土木工程和子專業在內的多種工業應用中得到了廣泛的應用。 在岩土工程領域,光彈性技術已用於對顆粒材料中的力進行定性和定量測量。這可以通過在兩個偏振濾鏡之間放置透明的雙折射聚合物來實現,從而使該材料根據所施加的應力量旋轉偏振光。在單個平面上使用該聚合物的多個樣本,可以模擬不同種類的顆粒材料。 使用光彈性技術可以進行廣泛的定性和定量分析。這項研究的目的是確定能夠提供最高精度結果的實驗裝置,以建立光彈性實驗,從而研究兩種顆粒材料在單軸載荷下的宏觀和微觀行為。 | zh_TW |
| dc.description.abstract | In the twentieth century, the photoelastic phenomenon was discovered by the Scottish physicist David Brewster. In collaboration E.G. Coker and L.N.G. Filon, many experimental frameworks were developed. As time went by, this technique and the equipment used, became simpler and more refine. Since it became a viable technique for qualitative and quantitative stress analysis, it was able to find a widespread use in several industrial applications, including civil engineering and subspecialties. In the geotechnical engineering field, photoelastic technique has been used to make both qualitative and quantitative measurements of forces within granular materials. This can be achieved by placing a transparent, birefringent polymer between two polarizing filters, so that the material rotates the polarized light according to the amount of stress to which it is been submitted. Using several specimens of this polymer in a single plane, it is possible to simulate different kinds of granular materials. There is a wide range of qualitative and quantitative analysis that can be done using the photoelastic technique. The aim of this research is to determine the experimental setup that can provide results with the highest accuracy in order to build a photoelastic experiment that can study the macroscopic and microscopic behavior of two granular materials when they are submitted to uniaxial loadings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:35:03Z (GMT). No. of bitstreams: 1 U0001-1208202011552400.pdf: 8109617 bytes, checksum: 7d8f17bceef08382448c83df93e106c3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 1. CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Research objectives 2 1.3 Thesis outline 2 2. CHAPTER 2 LITERATURE REVIEW 3 2.1 Wave light theory 3 2.2 Refraction 4 2.3 Polarization 6 2.3.1 Linear or plane-polarized light 6 2.3.2 Circularly polarized light 7 2.4 Optical elements 8 2.4.1 Polarizing filter 8 2.4.2 Wave plates 8 2.4.3 Birefringence 9 2.5 Fringe contours 11 2.5.1 Isoclinics 11 2.5.2 Isochromatics 13 2.6 Polariscopes 14 2.6.1 Linear or plane polariscope 14 2.6.2 Circular polariscope 15 2.7 Calibration of the material 17 2.7.1 Dark field image 17 2.7.2 Bright field image 23 2.7.3 Fringe constant 24 2.8 Particle detection 27 2.8 Measurements of force 29 3. CHAPTER 3 EXPERIMENTAL PROGRAM 31 3.1 Objectives 31 3.2 Materials and physical properties 32 3.2.1 Calibration of the photoelastic material 32 3.2.2 Geotechnical model test 36 3.3 Preparation of the photoelastic particles 37 3.3.1 Geometry of the particles 37 3.3.2 Cutting of the photoelastic material 38 3.3.3 Annealing of the photoelastic particles 39 3.4 Calibration of the photoelastic material 41 3.4.1 Measurement of the photoelastic particles 41 3.4.2 Setup of the circular polariscope 42 3.4.3 Loading of the photoelastic particle 43 3.4.4 Image post-processing 43 3.5 Geotechnical model test 44 3.5.1 Design of the container 45 3.5.2 Operation of the photoelastic model 47 3.5.3 Particle tracking 48 3.5.4 Estimation of the vector contact forces 49 4. CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 52 4.1 Calibration of the photoelastic material PSM-1 52 4.1.1 Estimation of fσ using polychromatic light 53 4.1.2 Estimation of fσ using monochromatic light 71 4.1.3 Comparison between polychromatic and monochromatic light 86 4.2 Geotechnical model test: Settlement behavior 86 4.2.1 Homogeneous material 86 4.2.2 Non-homogeneous material 93 4.3 Estimation of impact angles and vector contact forces 100 5. CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 103 5.1 Conclusions 103 5.2 Recommendations 104 REFERENCES 105 | |
| dc.language.iso | en | |
| dc.subject | 微觀分析 | zh_TW |
| dc.subject | 光彈性 | zh_TW |
| dc.subject | 顆粒材料 | zh_TW |
| dc.subject | 單軸壓縮 | zh_TW |
| dc.subject | 宏觀分析 | zh_TW |
| dc.subject | Macroscopic Analysis | en |
| dc.subject | Photoelasticity | en |
| dc.subject | Microscopic Analysis | en |
| dc.subject | Granular Material | en |
| dc.subject | Uniaxial Compression | en |
| dc.title | 光彈技術於大地工程模型試驗應用之初探 | zh_TW |
| dc.title | Investigation of Photoelastic Technique in Geotechnical Model Tests | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪汶宜(Hong Wen-Yi),林志平(Chih-Ping Lin),鄧福宸(Fu-Chen Teng) | |
| dc.subject.keyword | 光彈性,顆粒材料,單軸壓縮,宏觀分析,微觀分析, | zh_TW |
| dc.subject.keyword | Photoelasticity,Granular Material,Uniaxial Compression,Macroscopic Analysis,Microscopic Analysis, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202003067 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202011552400.pdf 未授權公開取用 | 7.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
