Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓
dc.contributor.authorNai-Jie Huangen
dc.contributor.author黃迺絜zh_TW
dc.date.accessioned2021-06-15T11:33:29Z-
dc.date.available2021-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation朱曜國,2007。池上斷層的古地震研究,國立臺灣大學理學院地質科學所,碩士論文。
林啟文、陳文山、饒瑞鈞,2007。臺灣活動斷層調查的近期發展,經濟部中央地質調查所特刊,18,85-110。
林銘郎、李崇正、黃文正、黃文昭,2014。活動斷層進地表變形特性研究(4/4),經濟部中央地質調查所,共207頁。
徐錫偉、計鳳桔、于貴華、陳文彬、王峰、江娃利,2000。用鑽孔地層剖面記錄恢復古地震序列:河北夏墊斷裂古地震研究灞。地震地貭,22(1),9-19。
唐厚樞,2004。石岡地區之古地震研究,國立中山大學海洋地質及化學研究所,碩士論文。
陳文山、劉力豪、顏一勤、楊小青、李龍昇、游能悌、張徽正、石瑞銓、陳于高、李元希、林偉雄、石同生、盧詩丁,2003。新城斷層的古地震研究,經濟部中央地質調查所特刊,14,11-23。
陳映璇、沈淑敏、詹瑜璋、謝有忠,2009。光達資料在台灣海岸地形變遷上的應用,航測及遙測學刊,14(2),157-170。
陳永寬、詹進發、葉堃生、鄭祈全、施瑩瑄,2005。應用地面雷射掃描儀測算樹高之研究,航測及遙測學刊,10,327-336。
國家教育研究院雙語詞彙、學術名詞暨辭書資訊網,2016,URL:http://terms.naer.edu.tw/(last date accessed: 31 July 2016).
彭翊雁,2015。以強度資訊進行多時騎車載光達點雲特徵匹配與改正,國立臺灣大學工學院土木工程學系,碩士論文。
傅桂霖、陳璁慶、陳素珠,2004。衛星影像紋理分析再山坡地變異點偵測之應用,水土保持學報,36(3),201-214。
楊濟豪、曹孟真、詹尚書、李亮瑩、王泰典、許宗傑、柯承宏、陳怡頻,2014。地面光達應用於露頭不連續面調查與岩體工程特性評估探討,中華水土保持學報,45(1),1-18。
經濟部,2014。活動斷層地質敏感區劃定計畫書-車籠埔斷層。經濟部中央地質調查所,共35頁。
經濟部中央地質調查所,2015,URL:http://fault.moeacgs.gov.tw/TaiwanFaults_2009/PageContent.aspx?type=C&id=196&92 (last date accessed: 20 April 2015).
鄭雅文,2007。高解析度衛星影像分類應用於國土利用調查之研究,國立交通大學土木工程學系,碩士論文。
鄧起東、晁洪太、閔偉、鍾以章,2002。海域活動斷裂探測和古地震研究,中國地震,18(3),311-315。
蕭國鑫、劉治中、劉進金、何心瑜、黃英婷,2008。高解析影像應用於土地利用分類之探討。航測及遙測學刊, 13(4),261-271。
Angelier, J., E. barrier, and H. T. Chu. 1986. Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan. Tectonophysics, 125, p. 161-178.
Burton, D., Dunlap, D. B., Wood, L. J., and Flaig, P. P. 2011. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5), 339-347.
Bistacchi, A., Griffith, W. A., Smith, S. A., Di Toro, G., Jones, R., and Nielsen, S. 2011. Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics, 168(12), 2345-2363.
Besl, P. J., and N. McKay., 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Recognition and Machine Intelligence, 14, 239-256.
Chen, W. S., Chen, Y. G., and Chang, H. C. 2001. Paleoseismic study of the Chelungpu fault in the Mingjian area. Western Pacific Earth Sciences, 1(3), 351-358.
Chen, W. S., Lee, K. J., Lee, L. S., Ponti, D. J., Prentice, C., Chen, Y. G., Chen, H. C., and Lee, Y. H. 2004. Paleoseismology of the Chelungpu Fault during the past 1900 years. Quaternary International, 115, 167-176.
 
Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., & Lin, M. L. 2006. Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake. Engineering Geology, 88(3), 160-172.
Chen, W. S., Yang, C. C., Yen, I. C., Lee, L. S., Lee, K. J., Yang, H. C., Chang, H. C., Ota, Y., Lin, C. W., Lin, W. H., Shih, T. S., and Lu, S. T. 2007. Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan: Evidence from the Chushan excavation site. Bulletin of the Seismological Society of America, 97(1B), 1-13.
Conners, R. W., and Harlow, C. A. 1980. A theoretical comparison of texture algorithms. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (3), 204-222.
Conners, R. W., Trivedi, M. M., and Harlow, C. A. 1984. Segmentation of a high-resolution urban scene using texture operators. Computer Vision, Graphics, and Image Processing, 25(3), 273-310.
Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychosocial Measurement, 20, 37-46.
Delaunay, B. 1934. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7 (793-800): 1-2.
Han, J. Y., Perng, N. H., and Lin, Y. T. 2013. Feature conjugation for intensity-coded LIDAR point clouds. Journal of Surveying Engineering, 139(3), 135-142.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H. 1973. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, (6), 610-621.
Lillesand, T. M., and Kiefer, R. W. 1994. Remote sensing and photo interpretation. John Wiley and Sons: New York, 750.
McCalpin, J. P., ed. 2009. Paleoseismology. Academic press, Vol. 95, 629 p.
Mikhail, E. M., Bethel, J. S., and McGlone, J. C. 2001. Introduction to modern photogrammetry. Vol. 1. John Wiley and Sons, Inc., 496 p.
Monserud, R. A., and Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological modelling, 62(4), 275-293.
Nilsson, M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote sensing of environment, 56(1), 1-7.
Nurunnabi, A., Belton, D., and West, G. 2014. Robust statistical approaches for local planar surface fitting in 3D laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 106-122.
Omasa, K., Hosoi, F., and Konishi, A. 2007. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany, 58(4), 881-898.
Pu, S., Rutzinger, M., Vosselman, G., and Elberink, S. O. 2011. Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28-S39.
Pu, S., and Vosselman, G. 2006. Automatic extraction of building features from terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 25-27.
Prokop, A., and Panholzer, H. 2009. Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Natural Hazards and Earth System Science, 9(6), 1921-1928.
Ran, Y., Chen, L., Chen, J., Wang, H., Chen, G., Yin, J., Shi, X., Li, C., and Xu, X. 2010. Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics, 491(1), 141-153.
Sieh, K. 1978. Slip along the San Andreas fault associated with the great 1857 earthquake. Bulletin of the Seismological Society of America, 68(5), 1421-1448.
Serna, A., and Marcotegui, B. 2013. Urban accessibility diagnosis from mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 23-32.
Serna, A., and Marcotegui, B. 2014. Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 243-255.
Sturzenegger, M., and Stead, D. 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3), 163-182.
Teza, G., Galgaro, A., Zaltron, N., and Genevois, R. 2007. Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing, 28(16), 3425-3446.
Tansey, K., Chambers, I., Anstee, A., Denniss, A., and Lamb, A. 2009. Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Applied geography, 29(2), 145-157.
Van Gosliga, R., Lindenbergh, R., and Pfeifer, N. 2006. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. In: Image Engineering and Vision Metrology. ISPRS Commission, Vol. 36, 167-172.
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y., Wu, J., and Liu, H. 2013. A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing, 5(2), 584-611.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49535-
dc.description.abstract槽溝挖掘方法為古地震學主要研究方法之一,藉由挖掘後的現地資料及槽溝剖面地層圖做為地震潛勢災害分析之依據,由於目前槽溝剖面地層圖之製作方式主要仰賴大量人力和簡易的照相記錄,不僅耗時費力,且成果品質不易掌握。因此,本研究目標為將發展以搭載著攝影機之地面光達系統產製槽溝剖面地層圖之流程,由現地取得槽溝三維坐標點雲後,將各測站點雲套合投影至最適投影平面,並以彩色點雲資訊為基礎,將產製之槽溝影像結合紋理特徵萃取進行影像分類。實驗成果顯示,所提出的方法可以由光達掃瞄之離散點雲產製槽溝影像,並能額外提供影像和光達點雲資料之尺度誤差量做為變形評估之依據,而在槽溝影像分類成果,依據過去的槽溝地層分層圖進行監督式分類,亦可有效地分出地層類別,分類整體精度為81.18%,Kappa值為0.7646。同時,在加入紋理分析後能與光譜分類結果有效結合,產製出含有紋理資訊之槽溝地層分層圖,以輔助地質學家後續進行歷史地震事件分析及相關應用。zh_TW
dc.description.abstractExcavating fault trenches is one of main method to study paleoseismology. However, the current approach which costs considerable time and manpower only relies on geologists to recognize the multiple faulting events. Therefore, this study constructs an automatic procedure to map geological sections by using terrestrial LiDAR systems integrated with cameras. The experiment results indicated that the proposed approach can provide high-quality images of fault trenches and amount of image deformation can also be simultaneously evaluated. In the supervised classification procedures, the classification accuracies are also encouraging (overall accuracy 81.18% and kappa 0.7646). Furthermore, by using an existing geological section produced in 2002 with the texture analysis and classification from the image, the major categories can be correctly identified. It gives solid evidence that the terrestrial LiDAR techniques can be efficiently extended to the applications in geological studies.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:33:29Z (GMT). No. of bitstreams: 1
ntu-105-R03521118-1.pdf: 8892128 bytes, checksum: ec822792dff48d7d74ab9ec8fb705973 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.1.1 地震潛勢分析的重要性 1
1.1.2 古地震研究 3
1.2 研究動機與目的 6
1.3 論文架構 7
第二章 文獻回顧 8
2.1 槽溝開挖之重要性 8
2.2 槽溝開挖後續應用 10
2.3 槽溝開挖及剖面製作程序 11
2.4 新式三維測繪技術 15
2.4.1 近景攝影測量 15
2.4.2 雷射掃瞄技術 17
2.5 影像分類理論 21
2.5.1 光譜型分類法 21
2.5.2 結合空間資訊分類法 22
第三章 研究方法 25
3.1 資料預處理 25
3.1.1 光達點雲套合 26
3.2 最適投影平面 27
3.2.1 槽溝主平面計算 27
3.2.2 搜尋投影平面 28
3.2.3 非槽溝面點雲剔除 29
3.3 槽溝影像製作 30
3.3.1 離散點雲平面化 30
3.3.2 點雲網格化 30
3.4 影像分析 32
3.4.1 影像分類 32
3.4.2 群聚處理 37
第四章 實驗與成果分析 38
4.1 資料介紹 38
4.2 資料預處理 40
4.3 最適投影平面成果 41
4.4 槽溝影像產製成果 43
4.5 影像分析 46
4.5.1 監督式影像分類成果 46
4.5.2 分類成果評估指標 49
4.5.3 群聚處理成果比較 52
4.5.4 紋理分析結合監督式分類成果 53
第五章 結論與建議 59
5.1 結論 59
5.2 建議 60
參考文獻 62
dc.language.isozh-TW
dc.subject槽溝挖掘zh_TW
dc.subject地面光達zh_TW
dc.subject影像分類zh_TW
dc.subject影像分析zh_TW
dc.subject紋理分析zh_TW
dc.subjectTerrestrial LiDAR Systemen
dc.subjectImage Analysisen
dc.subjectTrench Excavationen
dc.subjectImage Classificationen
dc.subjectTexture Analysisen
dc.title以雷射掃瞄技術輔助斷層槽溝地層分析zh_TW
dc.titleAnalysis of Geological Section for Fault Trenches Using Laser Scanning Techniqueen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王泰典,楊明德,翁孟嘉
dc.subject.keyword地面光達,槽溝挖掘,影像分析,影像分類,紋理分析,zh_TW
dc.subject.keywordTerrestrial LiDAR System,Trench Excavation,Image Analysis,Image Classification,Texture Analysis,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201602647
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
8.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved