請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49534
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智(Hong-Tsu Young) | |
dc.contributor.author | Wei-Lun Chung | en |
dc.contributor.author | 鍾委倫 | zh_TW |
dc.date.accessioned | 2021-06-15T11:33:26Z | - |
dc.date.available | 2019-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-16 | |
dc.identifier.citation | [1] http://chem.cersp.com/HXJS/200511/237.html , 2016年6月22日引用.
[2] J. Molenda, M. Molenda, 'Composite Cathode Material for Li-Ion Batteries Based on LiFePO_4 System,' Metal, Ceramic and Polymeric Composites for Various Uses, 2011. [3] http://www.zzjjw.com.cn/technology/2322.html , 2016年6月22日引用. [4] 黃貫深, '電動車用鋰電池放電熱分析,' 國立台灣大學機械工程學研究所碩士論文, 2013. [5] 蔡銘吉;蕭玨騫, '溫度因子對磷酸鋰鐵電池充放電效能之影響初探,' CEPS研究與創新12期, 7-12, 2011. [6] F. Wen, C. Lin, J. C. Jiang, Z. G. Wang, 'A new evaluation method to the consistency of lithium-ion batteries in electric vehicles,' IEEE, 2012. [7] 'ANSYS Fluent Advanced Add-On Modules,' Ansys, Inc, 2015. [8] S. C. Chen, Y.Y. Wang, C.C. Wan., 'Thermal analysis of spirally wound lithium batteries,' Journal of the Electrochemical Society, 153 (4), A637–A648, 2006. [9] P. M. Gomadam, R. E. White, J.W. Weidner, 'Modeling Heat Conduction in Spiral Geometries,' Journal of the Electrochemical Society, 150 (10), A1339– A1345, 2003. [10] R. E. White, E. E. Kalu, 'Thermal Analysis of Spirally Wound Li/BCX and Li / SOCl2 Cells,' Journal of the Electrochemical Society, 140 (1), 1993. [11] J. N. Harb, R.M. LaFollette, 'Mathematical Model of the Discharge Behavior of a Spirally Wound Lead‐Acid Cell,' Journal of the Electrochemical Society, 146 (3), A809–A818, 1999. [12] T. D. Hatchard, D.D. MacNeil, A.Basu, J.R. Dahn, 'Thermal Model of Cylindrical and Prismatic Li-ion Cells,' Journal of the Electrochemical Society, 148 (7), A755–A761, 2001. [13] 陳欣志, '鋰電池熱現象之模擬,' 國立清華大學化學工程研究所博士論文, 2005. [14] Y. I. Cho, G. Halpert, 'Heat dissipation of high rate Li-SOCl2 primary cells,' Journal of Power Sources, 18, 109, 1986. [15] D. Bernardi, E. Pawlikowski, J. Newman, 'A General Energy Balance for Battery Systems,' Journal of the Electrochemical Society, 132 (1), A5–A12, 1985. [16] M. Xu, Z. Zhang, X. Wang 'Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries,' Journal of Power Sources, 2014. [17] X. Hu, S. Li, H. Peng, 'A comparative study of equivalent circuit models for Li-ion batteries,' Journal of Power Sources, 198 (10), 2012. [18] R. Jackey, M. Saginaw, P. Sanghvi, J. Gazzarri, 'Battery Model Parameter Estimation Using a Layered Technique : An Example Using a Lithium Iron Phosphate Cell,' SAE World Congress, 2013. [19] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, 'Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,' Applied Energy, 134, 2014. [20] X.M. Xu, R. He, 'Review on the heat dissipation performance of battery pack with different structures and operation conditions,' Renewable and Sustainable Energy Reviews, 29, 2014. [21] Q. Wang, B. Jiang, Q.F. Xue, H.L. Sun, 'Experimental investigation on EV battery cooling and heating by heat pipes,' Applied Thermal Engineering, 88, 2015. [22] K. Kumaresan, G. Sikha, R. E. White, 'Thermal Model for a Li-Ion Cell, ' Journal of the Electrochemical Society, 155 (2), A164–A171, 2008. [23] B. Schweighofer, K. M. Raab, G. Brasseur, 'A Modeling of high power automotive batteries by the use of an automated test system,' IEEE Transactions on Instrumentation and Measurement, 52 (4), 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49534 | - |
dc.description.abstract | 磷酸鋰鐵電池由於適合大功率放電和安全性較高等特性,已經越來越廣泛地運用在純電動車以及混合動力電動車上。一般來說,鋰電池在放電過程中溫度會持續上升,如果超過其理想操作溫度範圍,會導致鋰電池的壽命受到影響。鋰電池操作時的溫度控制不僅僅是維持鋰電池的溫度在合理範圍內,同時也要顧慮到電池溫度一致性的問題,因為電池的任何不一致性皆會影響電池組的放電效率。然而,若想從實驗來獲取鋰電池放電之相關結果,往往需付出大量的時間與成本。有鑑於此,本研究之目的為建立一精準的鋰電池模型,來加速電池放電特性如放電電位、電量與熱生成等的分析效率,進而提供電池組一些散熱策略的建議。
本文針對兩種不同形式的磷酸鋰鐵電池模型做分析,分別是含有材料特性、物理背景意義的Newman模型和經類比電池系統特性的等效電路模型。將兩者模擬結果與實驗進行比對之後,等效電路模型產生較為精準的模擬結果。因此,後續電池組之散熱模型係以單電池等效電路模型為基礎開發。電池組之散熱分析包括:自然對流條件下改變電池間距;強制對流條件下固定總流率,改變風扇數量;及透過改變風扇及出風口位置進行流向控制。 對電池組而言,如何維持各個電池的狀態一致性是最重要的。因此,根據模擬結果發現,若要增加電池組溫度的一致性,應適當地減少電池彼此間之距離、適當地增加風扇數量以及視放電速率來進行對流流向與風扇位置之配置。 | zh_TW |
dc.description.abstract | Lithium iron phosphate (LFP) batteries are becoming widely used in electric vehicles (EV) and hybrid electric vehicles (HEV) owing to its capability of high power output and its safety characteristics. Generally, the temperature of LFP batteries rises while discharging and if it goes beyond the appropriate temperature range, it will lead to a shorter cycle life. Besides, for a battery pack, we not only need to sustain temperature in an appropriate range, but we also need to ensure the consistency among batteries, which hugely influences the discharge rate of a battery pack. But, it is time consuming and expensive to optimize battery pack design through trial-and-error tests and experiments. Hence, this study aims to develop an accurate model to facilitate the analysis of battery pack performance and further, to provide a few insight into thermal management of a battery pack.
This study analyzes two different types of LFP battery models. One is the Newman model, which incorporates the properties of material and physical processes occur in batteries. Another is the equivalent circuit model, ECM, which resembles the physical processes of a battery with equivalent circuits such that it reduces the complexity of analysis. In comparison to experimental data, we find that the ECM model simulates more accurate results than Newman model. Therefore, the battery pack model is developed on the basis of the ECM, single cell model. The thermal management strategies analyzed include changing the adjacent battery distance under natural convection, adjusting the number of fans under at fixed total flow rate (force convection) and varying the locations of inlet and outlet for flow arrangement. In conclusion, for a battery pack, the most important thing is to maintain consistency among individual cells. Based on our simulation results, we find that reducing the adjacent battery distance and increasing the number of fans are feasible strategies to achieve that. Apart from that the aforementioned strategies, we also learn that flow arrangement via exchanging the location of inlet and outlet may achieve better performance in certain cases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:33:26Z (GMT). No. of bitstreams: 1 ntu-105-R03522715-1.pdf: 5079878 bytes, checksum: 6051448a3de705d1eb5a6510ddf8ca0e (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 磷酸鋰鐵電池介紹 2 1.2.1. 淺談鋰離子電池 2 1.2.2. 磷酸鋰鐵電池簡介 3 1.3. 研究目的 6 1.4. 論文架構 10 第二章 文獻回顧 11 2.1. 簡介 11 2.2. 圓柱型鋰電池幾何模型簡化 11 2.3. 鋰電池模型介紹 13 2.4. 鋰電池組之散熱方法概述 19 2.5. 小結 21 第三章 研究方法 22 3.1. 簡介 22 3.2. 研究架構與流程 22 3.3. 單顆鋰電池之模型架構 24 3.4. 電池組之模型架構 35 3.5. 電池組之散熱方式 37 3.5.1 自然對流條件下改變電池間距 37 3.5.2 強制對流條件下固定總流率,改變風扇數量 38 3.5.3 改變風扇及出風口位置進行流向控制 42 3.6. 小結 43 第四章 實驗設計與規劃 44 4.1. 簡介 44 4.2. 鈕釦型電池實驗 44 4.2.1 實驗規劃與架構 44 4.2.2 鈕釦型電池實驗設計 44 4.3.磷酸鋰鐵電池實驗 45 4.3.1 實驗規劃與架構 45 4.3.2 實驗設備簡介 46 4.3.3 單電池充放電實驗設計 53 4.3.4 電池組充放電實驗設計 54 第五章 實驗結果驗證與模擬分析討論 55 5.1. 單電池驗證與討論 55 5.1.1. Newman model 與 ECM model跟結果之比對 55 5.1.2. ECM model 在不同C rate 下的放電曲線 62 5.1.3. ECM model 在不同C rate 下的溫升曲線 63 5.2. 電池組驗證與討論 64 5.3. 電池組散熱分析之結果與討論 65 5.3.1. 案例(一)─自然對流條件下改變電池間距 65 5.3.2. 案例(二)─強制對流條件下固定總流率,改變風扇數量 66 5.3.3. 案例(三)─改變風扇及出風口位置進行流向控制 70 第六章 總結與未來展望 73 6.1. 結論 73 6.2. 未來展望 74 參考文獻 76 | |
dc.language.iso | zh-TW | |
dc.title | 磷酸鋰鐵電池模型與電池組之散熱分析 | zh_TW |
dc.title | Thermal Analysis and Modeling of Lithium Iron Phosphate Batteries and Battery Packs | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖國基,陳洵毅(Hsun-Yi Chen),田振揚 | |
dc.subject.keyword | 磷酸鋰鐵電池,等效電路模型,電池組散熱, | zh_TW |
dc.subject.keyword | Lithium iron phosphate (LFP) battery,Equivalent circuit model (ECM),Heat dissipation for battery packs, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU201601907 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。