Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49519
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉
dc.contributor.authorPing-Chun Hsiehen
dc.contributor.author謝秉鈞zh_TW
dc.date.accessioned2021-06-15T11:32:39Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citationAiyar, Nambi, Jyoti Disa, Zhaohui Ao, Haisong Ju, Sandhya Nerurkar, Robert N. Willette, Colin H. Macphee, Douglas G. Johns, and Stephen A. Douglas. 2007. 'Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells', Molecular and Cellular Biochemistry, 295: 113-20.
Bagnasco, S., R. Balaban, H. M. Fales, Y. M. Yang, and M. Burg. 1986. 'Predominant osmotically active organic solutes in rat and rabbit renal medullas', J Biol Chem, 261: 5872-7.
Benjamini, Yoav, and Yosef Hochberg. 1995. 'Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing', Journal of the Royal Statistical Society. Series B (Methodological), 57: 289-300.
Braverman, N. E., and A. B. Moser. 2012. 'Functions of plasmalogen lipids in health and disease', Biochim Biophys Acta, 1822: 1442-52.
Bridges, J. P., M. Ikegami, L. L. Brilli, X. Chen, R. J. Mason, and J. M. Shannon. 2010. 'LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice', J Clin Invest, 120: 1736-48.
Broniec, A., R. Klosinski, A. Pawlak, M. Wrona-Krol, D. Thompson, and T. Sarna. 2011. 'Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems', Free Radic Biol Med, 50: 892-8.
Buckpitt, A., B. Boland, M. Isbell, D. Morin, M. Shultz, R. Baldwin, K. Chan, A. Karlsson, C. Lin, A. Taff, J. West, M. Fanucchi, L. Van Winkle, and C. Plopper. 2002. 'Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity', Drug Metab Rev, 34: 791-820.
Buckpitt, A., A. M. Chang, A. Weir, L. Van Winkle, X. Duan, R. Philpot, and C. Plopper. 1995. 'Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters', Mol Pharmacol, 47: 74-81.
Buckpitt, A. R., N. Castagnoli, Jr., S. D. Nelson, A. D. Jones, and L. S. Bahnson. 1987. 'Stereoselectivity of naphthalene epoxidation by mouse, rat, and hamster pulmonary, hepatic, and renal microsomal enzymes', Drug Metab Dispos, 15: 491-8.
Buege, J. A., and S. D. Aust. 1978. 'Microsomal lipid peroxidation', Methods Enzymol, 52: 302-10.
Chen, W. L., C. Y. Lin, Y. H. Yan, K. T. Cheng, and T. J. Cheng. 2014. 'Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter', Mol Biosyst, 10: 3163-9.
Choe, M., C. Jackson, and B. P. Yu. 1995. 'Lipid-Peroxidation Contributes to Age-Related Membrane Rigidity', Free Radical Biology and Medicine, 18: 977-84.
Dong, Jun, Xiaoming Cai, Lili Zhao, Xingya Xue, Lijuan Zou, Xiuli Zhang, and Xinmiao Liang. 2010. 'Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers', Metabolomics, 6: 478-88.
Dunn, W. B., D. Broadhurst, P. Begley, E. Zelena, S. Francis-McIntyre, N. Anderson, M. Brown, J. D. Knowles, A. Halsall, J. N. Haselden, A. W. Nicholls, I. D. Wilson, D. B. Kell, and R. Goodacre. 2011. 'Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry', Nat Protoc, 6: 1060-83.
Fahy, E., S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. Raetz, T. Shimizu, F. Spener, G. van Meer, M. J. Wakelam, and E. A. Dennis. 2009. 'Update of the LIPID MAPS comprehensive classification system for lipids', J Lipid Res, 50 Suppl: S9-14.
Forkert, P. G. 1997. 'Conjugation of glutathione with the reactive metabolites of 1, 1-dichloroethylene in murine lung and liver', Microsc Res Tech, 36: 234-42.
Goeptar, Arnold R., Jan N. M. Commandeur, Ben van Ommen, Peter J. van Bladeren, and Nico P. E. Vermeulen. 1995. 'Metabolism and Kinetics of Trichloroethylene in Relation to Toxicity and Carcinogenicity. Relevance of the Mercapturic Acid Pathway', Chemical Research in Toxicology, 8: 3-21.
Gorgas, K., A. Teigler, D. Komljenovic, and W. W. Just. 2006. 'The ether lipid-deficient mouse: tracking down plasmalogen functions', Biochim Biophys Acta, 1763: 1511-26.
Griego, Fumie Y., Kenneth T. Bogen, Paul S. Price, and Douglas L. Weed. 2008. 'Exposure, epidemiology and human cancer incidence of naphthalene', Regulatory Toxicology and Pharmacology, 51: 22-26.
Guillou, H., P. Martin, S. Jan, S. D'Andrea, A. Roulet, D. Catheline, V. Rioux, T. Pineau, and P. Legrand. 2002. 'Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor alpha-deficient mice', Lipids, 37: 981-9.
Guillou, H., D. Zadravec, P. G. Martin, and A. Jacobsson. 2010. 'The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice', Prog Lipid Res, 49: 186-99.
Han, X., K. Yang, and R. W. Gross. 2012. 'Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses', Mass Spectrom Rev, 31: 134-78.
Hong, J. H., W. C. Lee, Y. M. Hsu, H. J. Liang, C. H. Wan, C. L. Chien, and C. Y. Lin. 2014. 'Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics', Journal of Applied Toxicology, 34: 1379-88.
Hong, R. W., J. D. Rounds, W. S. Helton, M. K. Robinson, and D. W. Wilmore. 1992. 'Glutamine preserves liver glutathione after lethal hepatic injury', Ann Surg, 215: 114-9.
Hull, Marshall C., David B. Sauer, and Jennifer S. Hovis. 2004. 'Influence of Lipid Chemistry on the Osmotic Response of Cell Membranes:  Effect of Non-Bilayer Forming Lipids', The Journal of Physical Chemistry B, 108: 15890-95.
Hyvonen, M. T., and P. T. Kovanen. 2005. 'Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds', Eur Biophys J, 34: 294-305.
Jerina, D. M., J. W. Daly, B. Witkop, P. Zaltzman-Nirenberg, and S. Udenfriend. 1970. '1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene', Biochemistry, 9: 147-56.
Kabarowski, J. H., K. Zhu, L. Q. Le, O. N. Witte, and Y. Xu. 2001. 'Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A', Science, 293: 702-5.
Kent, Claudia, and George M. Carman. 1999. 'Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus', Trends in Biochemical Sciences, 24: 146-50.
Keough, K. M. W., and P. J. Davis. 1984. 'Thermal Analysis of Membranes.' in Morris Kates and Lionel A. Manson (eds.), Membrane Fluidity (Springer US: Boston, MA).
Khaselev, N., and R. C. Murphy. 2000. 'Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine', J Lipid Res, 41: 564-72.
Lagarde, M., A. Geloen, M. Record, D. Vance, and F. Spener. 2003. 'Lipidomics is emerging', Biochim Biophys Acta, 1634: 61.
Lee Howard, Shih-Jen, and William P. Weber. 1989. 'Synthesis and photodegradation of poly[1,4-bis(dimethylsilyl)naphthalene]', Polymer Bulletin, 22: 355-62.
Lee, T. C. 1998. 'Biosynthesis and possible biological functions of plasmalogens', Biochim Biophys Acta, 1394: 129-45.
Ling, Y. S., H. J. Liang, M. H. Chung, M. H. Lin, and C. Y. Lin. 2014. 'NMR- and MS-based metabolomics: various organ responses following naphthalene intervention', Mol Biosyst, 10: 1918-31.
Long, P. H., R. A. Herbert, J. C. Peckham, S. L. Grumbein, C. C. Shackelford, and K. Abdo. 2003. 'Morphology of nasal lesions in F344/N rats following chronic inhalation exposure to naphthalene vapors', Toxicol Pathol, 31: 655-64.
Lu, Rong, Jun Wu, Richard P. Turco, Arthur M. Winer, Roger Atkinson, Janet Arey, Suzanne E. Paulson, Fred W. Lurmann, Antonio H. Miguel, and Arantzazu Eiguren-Fernandez. 2005. 'Naphthalene distributions and human exposure in Southern California', Atmospheric Environment, 39: 489-507.
Ma, C. C., and S. Ma. 2012. 'The role of surfactant in respiratory distress syndrome', Open Respir Med J, 6: 44-53.
Mahadevan, S., S. L. Shah, T. J. Marrie, and C. M. Slupsky. 2008. 'Analysis of metabolomic data using support vector machines', Anal Chem, 80: 7562-70.
Martinez-Seara, Hector, Tomasz Róg, Mikko Karttunen, Ramon Reigada, and Ilpo Vattulainen. 2008. 'Influence of cis double-bond parametrization on lipid membrane properties: How seemingly insignificant details in force-field change even qualitative trends', The Journal of Chemical Physics, 129: 105103.
Miller, C. W., and J. M. Ntambi. 1996. 'Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression', Proceedings of the National Academy of Sciences of the United States of America, 93: 9443-48.
Mir, S. A., P. Rajagopalan, A. P. Jain, A. A. Khan, K. K. Datta, S. V. Mohan, S. S. Lateef, N. Sahasrabuddhe, B. L. Somani, T. S. Keshava Prasad, A. Chatterjee, K. V. Veerendra Kumar, M. VijayaKumar, R. V. Kumar, S. Gundimeda, A. Pandey, and H. Gowda. 2015. 'LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma', J Proteomics, 127: 96-102.
Moya, F. R., H. F. Montes, V. L. Thomas, A. M. Mouzinho, J. F. Smith, and C. R. Rosenfeld. 1994. 'Surfactant protein A and saturated phosphatidylcholine in respiratory distress syndrome', Am J Respir Crit Care Med, 150: 1672-7.
O'Brien, Kym A. F., Lewis L. Smith, and Gerald M. Cohen. 1985. 'Differences in naphthalene-induced toxicity in the mouse and rat', Chemico-Biological Interactions, 55: 109-22.
Ohura, T., T. Amagai, M. Fusaya, and H. Matsushita. 2004. 'Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations', Environ Sci Technol, 38: 77-83.
Plopper, C. G., D. L. Cranz, L. Kemp, C. J. Serabjit-Singh, and R. M. Philpot. 1987. 'Immunohistochemical demonstration of cytochrome P-450 monooxygenase in Clara cells throughout the tracheobronchial airways of the rabbit', Exp Lung Res, 13: 59-68.
Plopper, C. G., C. Suverkropp, D. Morin, S. Nishio, and A. Buckpitt. 1992. 'Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene', J Pharmacol Exp Ther, 261: 353-63.
Pluskal, T., S. Castillo, A. Villar-Briones, and M. Oresic. 2010. 'MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data', BMC Bioinformatics, 11: 395.
Price, P. S., and M. A. Jayjock. 2008. 'Available data on naphthalene exposures: Strengths and limitations', Regulatory Toxicology and Pharmacology, 51: S15-S21.
Romero, F. J., F. Bosch-Morell, M. J. Romero, E. J. Jareno, B. Romero, N. Marin, and J. Roma. 1998. 'Lipid peroxidation products and antioxidants in human disease', Environ Health Perspect, 106 Suppl 5: 1229-34.
Ross, D. 1988. 'Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection', Pharmacol Ther, 37: 231-49.
Shoemaker, Scott D., and T. Kyle Vanderlick. 2002. 'Stress-Induced Leakage from Phospholipid Vesicles:  Effect of Membrane Composition', Industrial & Engineering Chemistry Research, 41: 324-29.
Slotte, J. P. and Ramstedt, B. 2007. 'The functional role of sphingomyelin in cel membranes
', Eur. J. Lipid Sci. Technol., 109: 977–81.
Smith, H. L., M. C. Howland, A. W. Szmodis, Q. Li, L. L. Daemen, A. N. Parikh, and J. Majewski. 2009. 'Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study', J Am Chem Soc, 131: 3631-8.
Spener, Friedrich, Michel Lagarde, Alain Géloên, and Michel Record. 2003. 'Editorial: What is lipidomics?', European Journal of Lipid Science and Technology, 105: 481-82.
Tang, C. H., P. N. Tsao, C. Y. Chen, M. S. Shiao, W. H. Wang, and C. Y. Lin. 2011. 'Glycerophosphocholine molecular species profiling in the biological tissue using UPLC/MS/MS', J Chromatogr B Analyt Technol Biomed Life Sci, 879: 2095-106.
van den Berg, R. A., H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf. 2006. 'Centering, scaling, and transformations: improving the biological information content of metabolomics data', BMC Genomics, 7: 142.
van Meer, Gerrit, Dennis R. Voelker, and Gerald W. Feigenson. 2008. 'Membrane lipids: where they are and how they behave', Nat Rev Mol Cell Biol, 9: 112-24.
Van Winkle, L. S., Z. A. Johnson, S. J. Nishio, C. D. Brown, and C. G. Plopper. 1999. 'Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure', Am J Respir Cell Mol Biol, 21: 44-53.
Vinaixa, M., S. Samino, I. Saez, J. Duran, J. J. Guinovart, and O. Yanes. 2012. 'A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data', Metabolites, 2: 775-95.
Wang, X., H. Lv, A. Zhang, W. Sun, L. Liu, P. Wang, Z. Wu, D. Zou, and H. Sun. 2014. 'Metabolite profiling and pathway analysis of acute hepatitis rats by UPLC-ESI MS combined with pattern recognition methods', Liver Int, 34: 759-70.
Wenk, Markus R. 2005. 'The emerging field of lipidomics', Nat Rev Drug Discov, 4: 594-610.
West, J. A., G. Pakehham, D. Morin, C. A. Fleschner, A. R. Buckpitt, and C. G. Plopper. 2001. 'Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats', Toxicol Appl Pharmacol, 173: 114-9.
Wilson, A. S., C. D. Davis, D. P. Williams, A. R. Buckpitt, M. Pirmohamed, and B. K. Park. 1996. 'Characterisation of the toxic metabolite(s) of naphthalene', Toxicology, 114: 233-42.
Worley, B., and R. Powers. 2013. 'Multivariate Analysis in Metabolomics', Curr Metabolomics, 1: 92-107.
Yang, J., X. Zhao, X. Liu, C. Wang, P. Gao, J. Wang, L. Li, J. Gu, S. Yang, and G. Xu. 2006. 'High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B', J Proteome Res, 5: 554-61.
Zepp, Richard G, and PF Schlotzhauer. 1979. 'Photoreactivity of selected aromatic hydrocarbons in water', Polynuclear aromatic hydrocarbons: 141-58.
Zhang, J., L. Yan, W. Chen, L. Lin, X. Song, X. Yan, W. Hang, and B. Huang. 2009. 'Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system', Anal Chim Acta, 650: 16-22.
洪思韓. 2014. '應用脂質體學在萘毒性耐受性小鼠中探討萘的毒理機制', 臺灣大學.
陳科翰. 2015. '應用質譜儀為基礎的脂質體學探討萘對小鼠的初期致毒機制', 臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49519-
dc.description.abstract萘為環境中常見的空氣汙染物之一,主要的來源來自於不完全燃燒、交通排放或是含萘製品(如:萘丸),過去有許多動物實驗探討萘的致毒機制,小鼠在經過不同劑量的萘暴露之後,其呼吸道上非纖毛細胞─克氏細胞(Clara cell)為主要的攻擊標靶,且細胞型態上的改變和暴露劑量的多寡有劑量效應性,在100 mg/kg的劑量暴露24小時後,看到克氏細胞膜上出現腫脹以及囊泡化現象,而200 mg/kg的暴露則出現細胞脫落和壞死,表示萘暴露可能會改變細胞膜的成分,脂質為細胞膜上最主要構成的物質,因此本研究利用脂質體學的研究方法,針對細胞膜中重要的脂質-磷脂醯膽鹼(Phosphatidylcholines)來探討不同劑量的萘對小鼠多重器官暴露造成的影響。
本研究動物實驗將小鼠分成三組,其中兩組分別經腹腔注射注入100、200 mg/kg萘,剩下一組只施打橄欖油載體做為實驗控制組,24小時後犧牲, 取下肺臟、肝臟以及腎臟樣本進行樣本前處理和脂質萃取,再利用極致液相層析儀搭配串聯式質譜儀(UPLC-MS/MS)進行後續脂質分析,得到的數據經過前處理後,再利用多變量分析─偏最小平方判別分析(Partial least squared discriminate analysis)以看出不同組別之間的脂質代謝物是否有明顯分群,另外利用無母數單變量分析─Kruskal-Wallis以及Dunnett’s test的事後檢定方法,可以找出主要改變的特定脂質,方便建立完整的代謝途徑擾動。
本研究發現不同萘劑量暴露會造成脂質體顯著差異。在萘的標靶器官–肺臟中,偏最小平方判別分析結果顯示低劑量組與高劑量組的脂質體分群是不同方向,在低劑量時,多種磷脂醯膽鹼(如:diacyl-phosphatidylcholines, plasmanylcholines和plasmenylcholines)有上升趨勢,推測可以增加細胞膜流動性,並產生抗氧化劑應付萘在體內代謝出的氧化壓力(oxidative stress),在高劑量萘暴露下,這些磷脂醯膽鹼則出現下降趨勢。我們推測小鼠肺臟暴露在低劑量萘時,生物會採取保護性修復機制,然而在高劑量暴露下,克氏細胞可能無法逆轉萘產生的壓力以至於發現有明顯細胞膜破裂。另外,在 肝臟及腎臟中,低劑量萘暴露下,無法觀察到有脂質擾動,但高劑量萘暴露下,卻可以看到磷脂醯膽鹼有顯著改變,過去文獻中並未看到肝臟和腎臟經過萘暴露之後,有出現明顯的型態學上的改變,而利用脂質體學的方法,可以觀察到脂質體的確有出現變化。
本研究顯示在不同劑量的萘暴露下,小鼠不同器官的磷脂醯膽鹼會呈現不同改變趨勢,研究結果可以透過比較肺臟與肝臟、腎臟之間的差異,找到有潛力的脂質,來進一步解釋萘暴露後造成不同傷害的原因。除此之外,利用脂質體學研究法,可以進一步應用在疾病預防、藥物開發和公共衛生上。
zh_TW
dc.description.abstractNaphthalene, the most common polycyclic aromatic hydrocarbons, is widely spread in the environment. Previous studies have demonstrated that naphthalene caused dose-dependent damage to nonciliated bronchiolar cell, Clara cell, and alteration of lipidome in mice. After 100 mg/kg naphthalene treatment, the histopathological results showed that cell membrane was swollen and vacuolated; after 200 naphthalene treatment, the cell membrane was exfoliated. This result indicated naphthalene-induced oxidative stress could change the component of cell membrane. In this study, main lipid components of cell membrane, phosphorylcholine-containing lipids including phosphatidylcholine and sphingomyelin were profiled in various organs of mice treated with naphthalene.
In this study, seven-week male ICR mice were treated with naphthalene (0, 100 or 200 mg/kg, ip.). After 24h, the liver, lung and kidney were collected and extracted. Phosphorylcholine-containing lipids were analyzed by using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) following partial least squares discriminant analysis (PLS-DA). After PLS-DA, the scores plots provide similarity of lipidome among groups. Additionally, statistical analysis, Kruskal-Wallis test and Dunnett’s test, were used to compare variance of selected lipid species between two groups.
Our results demonstrated that the lipidome after the naphthalene treatment were significantly different. In the lung, which is a naphthalene target organ, PLS-DA model showed that control group could be clearly separated from the low and high dose groups. Moreover, the lipid responses of the low-dose and the high-dose groups towards different direction. After low-dose naphthalene treatment, up-regulated diacyl-phosphatidylcholines, plasmanylcholines, and plasmenylcholines were observed which might strengthen the fluidity of membrane and be used as antioxidants to alleviate naphthalene-induced oxidative stress. On the other hand, high-dose naphthalene treatment caused down-regulated of those phosphatidylcholines which might indicate that cell fail to alleviate the higher naphthalene-induced assaults. Besides, dose-respond trends of phosphorylcholine-containing lipids were found in the PLS-DA models of liver and kidney results.
We conclude that MS-based lipidomic approaches are an effective and powerful tool to understand changes of metabolic pathways and their possible biological impacts after toxicant exposure. Furthermore, the platform can be applied to disease prevention, drug development, and public health.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:32:39Z (GMT). No. of bitstreams: 1
ntu-105-R03844013-1.pdf: 2248400 bytes, checksum: b50a88e28657a54d61f5a15a1c34c998 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of figures vii
List of tables viii
Chapter 1. Introduction 1
1.1 Environmental distribution and fate of naphthalene 1
1.2 The physicochemical properties of naphthalene 2
1.3 Dose-dependent naphthalene toxicity in animal models 2
1.4 Reactive naphthalene metabolite formation and naphthalene toxicity 4
1.5 Phosphorylcholine-containing lipids 5
1.6 Lipidomics 7
1.7 Study aim 8
Chapter 2. Materials and methods 9
2.1 Experimental flow chart 9
2.2 Animal handling 10
2.3 Samples preparation 10
2.4 Lipid extraction 11
2.5 Phosphorylcholine-containing lipid profiling by UPLC-MS/MS 11
2.6 Structural identification by UPLC-MS/MS 13
2.7 Data preprocessing 14
2.8 Criteria of filtering dataset 14
2.9 Data pretreatment 15
2.10 Multivariable analysis 16
2.11 Statistical Analysis 17
Chapter 3. Results 19
3.1 Summary of animals after naphthalene treatment 19
3.2 Lipid profiling by UPLC-MS/MS 19
3.3 Effects of naphthalene on phosphorylcholine-containing lipids 20
3.3.1 Lung 20
3.3.2 Liver 22
3.3.3 Kidney 25
Chapter 4. Discussion 28
4.1 The nature of lipidome in different organs 28
4.2 Changes of lipidome in mouse lung after different doses of naphthalene treatment 29
4.2.1 The opposite trend of phosphorylcholine-containing lipid profiling between high and low-dose of naphthalene treatment 29
4.2.2 Defense and damage mechanisms in phosphatidylcholines after naphthalene treatment 30
4.3 Changes of lipidome in the mouse liver after different doses of naphthalene treatment 34
4.3.1 PLS-DA showed dose-response effects of naphthalene on phosphorylcholine-containing lipid profiling 34
4.3.2 The rejuvenation of hepatocytes in phosphatidylcholines after naphthalene treatment 35
4.4 Changes of lipidome in mouse kidney after the different naphthalene treatment 37
4.4.1 PLS-DA showed dose-response effect of naphthalene on phosphorylcholine-containing lipid profiling 37
4.4.2 Changes of phosphatidylcholines after naphthalene treatment 38
4.5 Limitation and future work 39
Chapter 5. References 41
dc.language.isoen
dc.subject毒理學zh_TW
dc.subject磷脂醯膽鹼zh_TW
dc.subject脂質體學zh_TW
dc.subject質譜儀zh_TW
dc.subjectNaphthaleneen
dc.subjectToxicityen
dc.subjectLipidomicsen
dc.subjectPhosphorylcholine-containing lipidsen
dc.subjectMass spectrometryen
dc.title應用質譜儀為基礎的脂質體學探討萘對小鼠多重器官的劑量效應關係zh_TW
dc.titleMass Spectrometry-Based Lipidomics to Study Dose-Response Relationship of Naphthalene on Various Organs of Miceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee唐川禾,莊淳宇,林菀俞
dc.subject.keyword?,磷脂醯膽鹼,脂質體學,質譜儀,毒理學,zh_TW
dc.subject.keywordLipidomics,Phosphorylcholine-containing lipids,Mass spectrometry,Naphthalene,Toxicity,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201602846
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved