請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49505
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 席行正(Hsing-Cheng Hsi) | |
dc.contributor.author | Hsin-Jin Chiou | en |
dc.contributor.author | 邱馨瑾 | zh_TW |
dc.date.accessioned | 2021-06-15T11:31:56Z | - |
dc.date.available | 2016-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-16 | |
dc.identifier.citation | Acuña-Caro, C., Brechtel, K., Scheffknecht, G., and Braß, M. (2009). The effect of chlorine and oxygen concentrations on the removal of mercury at an FGD-batch reactor. Fuel, 88(12), 2489-2494.
Allen, S. J., McKay, G., and Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322-333. Ankrah, R. (2014). Mercury emissions: the global context. Appel, C., Ma, L. Q., Dean Rhue, R., and Kennelley, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113(1–2), 77-93. Bagheri, N., Aghaei, A., Vlachopoulos, N., Skunik-Nuckowska, M., Kulesza, P. J., Häggman, L., Boschloo, G., and Hagfeldt, A. (2016). Physicochemical identity and charge storage properties of battery-type nickel oxide material and its composites with activated carbon. Electrochimica Acta, 194, 480-488. Balbuena, P. B., and Gubbins, K. E. (1993). Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir, 9(7), 1801-1814. Bansal, R. C., and Goyal, M. (2005). Activated carbon adsorption. Boca Raton: CRC Press. Bhardwaj, R., Chen, X., and Vidic, R. D. (2009). Impact of fly ash composition on mercury speciation in simulated flue gas. Journal of the Air & Waste Management Association, 59(11), 1331-1338. Blanchard, N., Hatton, R., and Silva, S. (2007). Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange. Chemical physics letters, 434(1), 92-95. Blythe, G. M., DeBerry, D. W., and Pletcher, S. (2008). Bench-scale kinetics study of mercury reactions in FGD liquors. Final Report: DE-FC26-04NT42314 for the National Energy Technology Laboratory, Austin, TX. Brown, T. D., Smith, D. N., Jr., R. A. H., and O'Dowd, W. J. (1999). Mercury measurement and its control: what we know, have learned, and need to further investigate. Journal of the Air & Waste Management Association, 49(6), 628-640. Brunauer, S., Deming, L. S., Deming, W. E., and Telle, E. (1940). On a theory of the van der waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732. Cai, J. H., and Jia, C. Q. (2010). Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Industrial and Engineering Chemistry Research, 49(6), 2716-2721. Chang, J. C. S., and Ghorishi, S. B. (2003). Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber. Environmental science & technology, 37(24), 5763-5766. Chang, J. C. S., and Zhao, Y. (2008). Pilot plant testing of elemental mercury reemission from a wet scrubber. Energy and Fuels, 22(1), 338-342. Chen, C., Liu, S., Gao, Y., and Liu, Y. (2014). Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry. The Scientific World Journal, 2014. Di Natale, F., Erto, A., Lancia, A., and Musmarra, D. (2011). Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. Journal of Hazardous Materials, 192(3), 1842-1850. Eswaran, S., and Stenger, H. G. (2005). Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy & Fuels, 19, 2328-2334. Everett, D. H. (1972). Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31(4), 577-638. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physics and Chemistry, 57, 385-471. Galbreath, K. C., and Zygarlicke, C. J. (1996). Mercury speciation in coal combustion and gasification flue gases. Environmental science & technology, 30(8), 2421–2426. Galbreath, K. C., and Zygarlicke, C. J. (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289-310. Ghorishi, B., Miller, A. J., Mimna, A. R., and Byrne, H. (2014). Reemission White Paper Workgroup. Giles, C. H., Smith, D., and Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755-765. Gupta, S. S., and Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in Colloid and Interface Science, 162(1–2), 39-58. Hadi, P., To, M. H., Hui, C. W., Lin, C. S. K., and McKay, G. (2015). Aqueous mercury adsorption by activated carbons. Water Research, 73, 37-55. Heidel, B., Hilber, M., and Scheffknecht, G. (2014). Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization. Applied Energy, 114, 485-491. Heidel, B., Rogge, T., and Scheffknecht, G. (2016). Controlled desorption of mercury in wet FGD waste water treatment. Applied Energy, 162, 1211-1217. Ho, Y. S., and McKay, G. (1998). A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332-340. IUPAC. (1976). Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface chemistry part II: heterogeneous catalysis. Pure & Appl. Chem., 46, 71-79. Kazemi, F., Younesi, H., Ghoreyshi, A. A., Bahramifar, N., and Heidari, A. (2016). Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies. Process Safety and Environmental Protection, 100, 22-35. Krishnan, A. K., and Anirudhan, T. S. (2002). Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. Journal of Hazardous Materials, 92(2), 161-183. Lagergren, S. (1989). Zur theorie der sogenannten adsorption gelふster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1-39. Lee, S. J., Seo, Y. C., Jang, H. N., Park, K. S., Baek, J. I., An, H. S., and Song, K. C. (2006). Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmospheric Environment, 40(12), 2215-2224. Marsh, H., and Reinoso, F. R. (2006). Activated carbon. USA: Elsevier. McKay, G., Ho, Y. S., and Ng, J. C. Y. (1999). Biosorption of copper from waste waters: A review. Separation and Purification Methods, 28(1), 87-125. Nabais, J. V., Carrott, P. J. M., Carrott, M. M. L. R., Belchior, M., Boavida, D., Diall, T., and Gulyurtlu, I. (2006). Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres. Applied Surface Science, 252(17), 6046-6052. Nolan, P. S. (2000). Flue gas desulfurization technologies for coal-fired power plants. Paper presented at the The Babcock & Wilcox Company, US, presented by Michael X. Jiang at the Coal-Tech 2000 International Conference. Ochoa-Gonzalez, R., Diaz-Somoano, M., and Martinez-Tarazona, M. R. (2013). Influence of limestone characteristics on mercury re-emission in WFGD systems. Environmental science & technology, 47(6), 2974-2981. Pacyna, E., and Pacyna, J. (2002). Global emission of mercury from anthropogenic sources in 1995. Water, Air, and Soil Pollution, 137(1-4), 149-165. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44(20), 2487-2499. Partlan, E., Davis, K., Ren, Y., Apul, O. G., Mefford, O. T., Karanfil, T., and Ladner, D. A. (2016). Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 89, 161-170. Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., and Benson, S. A. (2003). Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82(2-3), 89-165. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964. Presto, A. A., and Granite, E. J. (2006). Survey of catalysts for oxidation of mercury in flue gas. Environmental Science and Technology, 40(18), 5601-5609. Ranganathan, K. (2003). Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon, 41(5), 1087-1092. Schweighauser, M. J., Foster, S., and Fairfax, V. (1992). Understanding the sources, trends, and impacts of mercury in the environment. Senior, C. (2007). Review of the role of aqueous chemistry in mercury removal by acid gas scrubbers on incinerator systems. Environmental Engineering Science, 24(8), 1129-1134. Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(1), 23-45. Tuzen, M., Karaman, I., Citak, D., and Soylak, M. (2009). Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination. Food and Chemical Toxicology, 47(7), 1648-1652. UNEP, G. M. A. (2002). United Nations Environment Programme. Chemicals, Geneva, Switzerland. UNEP, G. M. A. (2013). United Nations Environment Programme. Chemicals, Geneva, Switzerland. Vadivelan, V., and Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286(1), 90-100. Valdés, H., Sánchez-Polo, M., Rivera-Utrilla, J., and Zaror, C. (2002). Effect of ozone treatment on surface properties of activated carbon. Langmuir, 18(6), 2111-2116. Vijayaraghavan, K., Padmesh, T. V., Palanivelu, K., and Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1-3), 304-308. Wagner, C. D., Naumkin, A. V., Kraut-Vass, A., Allison, J. W., Powell, C. J., and Rumble, J. R. J. (2003). NIST Standard Reference Database 20, Version 3.4 (web version). Wang, J., Deng, B., Wang, X., and Zheng, J. (2009). Adsorption of aqueous Hg(II) by sulfur-impregnated activated carbon. Environmental Engineering Science, 26(12), 1693–1699. Wang, Q., Liu, Y., Yang, Z., Wang, H., Weng, X., Wang, Y., and Wu, Z. (2014). Study of mercury re-emission in a simulated WFGD solution containing thiocyanate and sulfide ions. Fuel, 134, 588-594. Wang, Y., Duan, Y., Yang, L., Zhao, C., Shen, X., Zhang, M., Zhuo, Y., and Chen, C. (2009). Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology, 90(5), 643-651. Weber, T. W., and Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. American Institute of Chemical Engineers Journal, 20, 228-238. WHO. (2016). Mercury and health. http://www.who.int/mediacentre/factsheets/fs361/en/. Wo, J., Zhang, M., Cheng, X., Zhong, X., Xu, J., and Xu, X. (2009). Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors. Journal of Hazardous Materials, 172(2–3), 1106-1110. Yang, R. T. (2003). Adsorbents : fundamentals and applications. Hoboken, New Jersey: John Wiley & Sons, Inc. Zhou, Z. J., Liu, X. W., Zhao, B., Chen, Z. G., Shao, H. Z., Wang, L. L., and Xu, M. H. (2015). Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Processing Technology, 131, 99-108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49505 | - |
dc.description.abstract | 由於世界各國對於火力發電的依賴性仍然相當高,燃煤電廠之汞排放議題一直以來備受大眾關注。在許多空污控制技術中,濕式煙氣脫硫系統(WFGD)是一個可有效去除汞並同時去除酸性氣體的設備。但因為水中含有還原性物質,例如亞硫酸根離子,最初被WFGD系統所捕捉的Hg2+會再還原並以元素汞的型態再釋放進入大氣中,導致WFGD脫汞效率的降低,造成二次汙染。
含硫活性碳具有高比表面積和表面官能基,對於吸附氣相或水相中的汞都有極高的去除效率。有鑑於此,本研究利用批次式實驗,經由實廠WFGD廢水中加入含硫粒狀活性碳進行實驗,測量液相中殘留汞含量,並控制溫度、pH、含硫活性碳劑量、初始汞濃度及SO32-濃度以觀察活性碳之吸附效果並同步探討等溫吸附及吸附動力模式。研究結果顯示,含硫活性碳比表面積為736.7 m2/ g,含硫量為4.6 wt%,其活性碳內微孔隙結構之比表面積較多,有利於活性碳吸附效率。不同pH值下,活性碳之吸附量隨pH上升而下降。而等溫吸附模擬結果顯示在比較低的汞濃度下實驗結果較符合線性等溫吸附模式。在氣態汞逸散連續監測結果發現,當添加SO32- = 5-100 mM時,氣態汞逸散有明顯上升的趨勢,此結果符合文獻所提HSO3-容易導致Hg0再還原。然而當SO32-濃度持續提升至200 mM及300 mM時,氣態汞的產生則有下降的趨勢,可能的原因為Hg(SO3)22-錯合物產生,導致Hg0再還原的情形降低。另外,動力吸附模式結果指出擬二階模式結果較符合實驗所得數據。而熱力學的參數計算後得到△H°= -19.14 kJ/mole、△S°= -0.037 kJ/mole、△G≒-30 kJ/mole,表示利用含硫活性碳吸附廢水中的汞是自發性和放熱性的吸附反應。 | zh_TW |
dc.description.abstract | Because thermal power generation is still extensively used globally, mercury (Hg) emissions from coal-fired power plants have been of greatest concerns to public. Among the available technologies for avoiding flue gas emissions, Wet Flue Gas Desulfurization (WFGD) has received considerable attention due to its capability to remove SO2 and Hg simultaneously. Under certain circumstances, however, oxidized mercury (Hg2+) captured by the WFGD system might be reduced by the reducing compounds, such as sulfites, and reemitted to the atmosphere in the form of Hg0 that causes secondary pollution and results in the lower efficiency of Hg removal by WFGD.
Activated carbon (AC) containing sulfur is highly effective in adsorption of gaseous and aqueous Hg pollutants because of its suitable physical and chemical properties. In this study, a series of designed batch experiments were conducted to obtain the optimal adsorption conditions for removing the aqueous Hg from WFGD wastewater by using a sulfur-containing activated carbon (SAC). The test variables included temperature, pH value, SAC dosage, initial Hg2+ concentration, and the SO32- concentrations of WFGD wastewater. The adsorption isotherms and kinetics were subsequently obtained and better understood by using theoretical and empirical simulation models. The total surface area and sulfur content of SAC was measured to be 736.7 m2/g and 4.6%, respectively. The high microporosity of SAC made the adsorbent suitable for the adsorption of Hg. The experimental results indicated that the Hg adsorption capacity of SAC decreased with increasing pH value. Furthermore, Hg adsorption capacity was better fitted with linear adsorption isotherm model, which is mainly due to the low Hg concentration range tested in this study. By measuring the gaseous Hg concentration, the reemission of gaseous Hg was found to ascend with increasing the SO32- concentration from 5 to 100 mM, which may be resulted from Hg0 formation from Hg2+ reduction due to the presence of HSO3-. However, the reemission of reduced Hg was markedly decreased as increasing SO32- addition from 100 to 300 mM, which may stem from the formation of Hg(SO3)22- stably present in aqueous phase. Kinetic simulation showed that the fitting by pseudo-second order equation possessed a higher R2 compared to that by pseudo-first order equation. Thermodynamic parameter calculation concluded that △H°= -19.14 kJ/mole, △S°= -0.037 kJ/mole, and △G≒-30 kJ/mole. These analytical results indicate that Hg adsorption by SAC is thermodynamically spontaneous and exothermic. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:31:56Z (GMT). No. of bitstreams: 1 ntu-105-R03541119-1.pdf: 2806810 bytes, checksum: b677fb833067110f3b4a8da342baab6f (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgement…………………………………………………………………………………………………… i
中文摘要…………………………………………………………………………………………………………………. ii Abstract………………………………………………………………………………………………………………......iv Contents. ………………………………………………………………………………………………………………….vi List of Figure… ………………………………………………………………………………………………………….xi List of Table….. ………………………………………………………………………………………………………..xiv Chapter 1. Introduction.. …………………………………………………………………………………………..1 1.1. Motivation…………………………………………………………….…………………………………………..1 1.2. Research Objectives …………………………………………………………………………………………..3 Chapter 2. Literature Review.. …………………………………………………………………………………..4 2.1. Mercury contamination…………………………………………………………………………………….. 4 2.1.1. The sources of mercury emissions………………………………………………………………….. 4 2.1.2. The toxicity of mercury …………………………………………………………………………………..6 2.2. Mercury transformations in coal combustion flue gas……………………………………….. 7 2.2.1. Mercury transformations in coal combustion flue gas …………………………………….7 2.2.2. Pathways of mercury transformation in coal combustion……………………………….. 9 2.3. Air pollution control devices in coal fired power plants for mercury control. ……10 2.3.1. Particulate matter control devices…………………………………………………………........10 2.3.2. Wet flue gas desulfurization………………………………………………………………………….10 2.3.3. Selective catalytic reduction (SCR)………………………………………………………………...11 2.3.4. Spray dryer absorbers…………………………………………………………………………….……..11 2.4. WFGD mercury reemission…………………………………………………………………………….…12 2.4.1. Flue gas mercury transition into WFGD…………………………………………………….…..12 2.4.2 Mercury reemission across WFGDs…………………………………………………………….….14 2.5. Activated carbon………………………………………………………………………………………………14 2.5.1. Physical and chemical characteristics of activated carbon……………………………..15 2.5.1.1. Specific surface area…………………………………………………………………………………..15 2.5.1.2. Pore size distribution (PSD)………………………………………………………………………..16 2.5.1.3. Surface functional groups…………………………………………………………………………..16 2.6. Types of Adsorption …………………………………………………………………………………………17 2.7. Adsorption isotherm………………………………………………………………………………………..18 2.8. Isothermal adsorption model…………………………………………………………………………..20 2.8.1. Henry's (linear) adsorption isotherm model………………………………………………….21 2.8.2. Langmuir isotherm model…………………………………………………………………………….21 2.8.3. Freundlich isotherm model…………………………………………………………………………..22 2.8.4. Linear forms of the isotherm models……………………………………………………………23 2.9. Adsorption kinetic model ………………………………………………………………………………..23 2.9.1. Pseudo first-order kinetics……………………………………………………………………………24 2.9.2. Pseudo second-order kinetics………………………………………………………………………..25 2.10. Hg of adsorption by sulfur-containing activated carbon in aqueous phase……..26 Chapter 3. Materials and Methods………………………………………………………………………….28 3.1. Experimental design …………………………………………………………………………………………28 3.2. Experiment equipment, analytical instruments and chemical drugs…………………30 3.3. Wastewater from actual coal-fired power plant……………………………………………….34 3.4. Physicochemical properties of activated carbon……………………………………………….35 3.4.1. Specific surface area, pore volumes and pore distribution…………………………….35 3.4.2. Elemental analysis…………………………………………………………………………………………36 3.4.3. Point of zero charge (PZC)………………………………………………………………………….....37 3.5. Batch experiment for mercury adsorption……………………………………………………….38 3.5.1. The effect of different pH on the efficiency of Hg adsorption by activated carbon…………………………………………………………………………………………………………………….39 3.5.2. The effect of different SAC dosage on the efficiency of Hg adsorption…………..40 3.5.3. The effect of different inlet Hg concentration on the efficiency of Hg adsorption ………………………………………………………………………………………………………………………..40 3.5.4. The effect of different sulfite concentration on the efficiency of Hg adsorption ………………………………………………………………………………………………………………………..41 3.5.5. Hg adsorption kinetics for sulfur-containing activated carbon……………………….42 3.6. Mercury reemission inhibition by sulfur-containing activated carbon for test in WFGD wastewater…………………………………………………………………………………………………..43 3.7. Solution analysis………………………………………………………………………………………………44 Chapter 4. Results and Discussion…………………………………………………………………………..46 4.1. Physical and chemical characteristics of the sulfur-containing activated carbon ………………………………………………………………………………………………………………………..46 4.2. Properties of wastewater from an actual coal-fired power plant………………………51 4.3. Laboratory-scale batch adsorption experiments……………………………………………….54 4.3.1. Effect of the pH……………………………………………………………………………………………..54 4.3.2. Effect of the adsorbent dosage……………………………………………………………………..57 4.3.3. Effect of the SO32- concentration………………………………………………………………….60 4.3.4. Hg reemission test…………………………………………………………………………………………62 4.3.5. Hg adsorption isotherm………………………………………………………………………………..64 4.3.5.1. Hg adsorption capacity of SAC at various Hg concentration and temperature ………………………………………………………………………………………………………………….…….64 4.3.5.2. Isotherm model………………………………………………………………………………………….69 4.3.6. Kinetic of adsorption…………………………………………………………………………….……….72 4.3.7. Thermodynamic parameters ………………………………………………………………………….76 Chapter 5. Conclusions and Recommendations……………………………………………………….78 5.1. Conclusions………………………………………………………………………………………………………78 5.2. Recommendations……………………………………………………………………………………………80 Reference………………………………………………………………………………………………………………..81 | |
dc.language.iso | en | |
dc.title | 利用含硫活性碳捕捉燃煤電廠脫硫廢水中氧化態汞之研究 | zh_TW |
dc.title | Evaluation of the mercury adsorption from WFGD wastewater in coal-fired power plant using sulfur-containing activated carbon | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 侯嘉洪(Chia-Hung Hou),李公哲(Kung-Cheh Li),林進榮(Chin-Jung Lin) | |
dc.subject.keyword | 燃煤電廠,濕式煙氣脫硫,汞,含硫活性碳,吸附, | zh_TW |
dc.subject.keyword | coal-fired power plant,wet flue gas desulfurization,mercury,sulfur-containing activated carbon,adsorption,re-emission, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201602793 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。