請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏 | |
| dc.contributor.author | Yung-Hao Chuang | en |
| dc.contributor.author | 莊永豪 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:50:32Z | - |
| dc.date.available | 2019-10-23 | |
| dc.date.available | 2021-05-15T17:50:32Z | - |
| dc.date.copyright | 2014-10-23 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | [1] P. B. Kingsley, 'Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization,' Concepts in Magnetic Resonance Part A, vol. 28, pp. 155-179, 2006.
[2] K. M. Hasan, D. L. Parker, and A. L. Alexander, 'Comparison of gradient encoding schemes for diffusion‐tensor MRI,' Journal of Magnetic Resonance Imaging, vol. 13, pp. 769-780, 2001. [3] P. B. Kingsley, 'Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion‐weighting factors, and gradient encoding schemes,' Concepts in Magnetic Resonance Part A, vol. 28, pp. 123-154, 2006. [4] S. Hunsche, M. E. Moseley, P. Stoeter, and M. Hedehus, 'Diffusion-Tensor MR Imaging at 1.5 and 3.0 T: Initial Observations 1,' Radiology, vol. 221, pp. 550-556, 2001. [5] S. Choi, D. T. Cunningham, F. Aguila, J. D. Corrigan, J. Bogner, W. J. Mysiw, et al., 'DTI at 7 and 3 T: systematic comparison of SNR and its influence on quantitative metrics,' Magnetic resonance imaging, vol. 29, pp. 739-751, 2011. [6] I.-T. Lin, H.-C. Yang, and J.-H. Chen, 'Using high-Tc superconducting resonator for enhancement of diffusion tensor imaging,' Journal of Applied Physics, vol. 109, p. 116103, 2011. [7] M. Laakso, K. Partanen, P. Riekkinen, M. Lehtovirta, E.-L. Helkala, M. Hallikainen, et al., 'Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia An MRI study,' Neurology, vol. 46, pp. 678-681, 1996. [8] A. Saleh, M. Schroeter, C. Jonkmanns, H. P. Hartung, U. Mödder, and S. Jander, 'In vivo MRI of brain inflammation in human ischaemic stroke,' Brain, vol. 127, pp. 1670-1677, 2004. [9] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, et al., 'Mapping human whole-brain structural networks with diffusion MRI,' PloS one, vol. 2, p. e597, 2007. [10] J. Achterberg, K. Cooke, T. Richards, L. J. Standish, L. Kozak, and J. Lake, 'Evidence for correlations between distant intentionality and brain function in recipients: a functional magnetic resonance imaging analysis,' Journal of Alternative & Complementary Medicine: Research on Paradigm, Practice, and Policy, vol. 11, pp. 965-971, 2005. [11] D. Le Bihan, 'Looking into the functional architecture of the brain with diffusion MRI,' Nature Reviews Neuroscience, vol. 4, pp. 469-480, 2003. [12] K. Setsompop and L. L. Wald, 'Method for simultaneous multi-slice magnetic resonance imaging,' ed: Google Patents, 2010. [13] K. Lee, J. Wild, P. Griffiths, and M. Paley, 'Simultaneous multislice imaging with slice‐multiplexed RF pulses,' Magnetic resonance in medicine, vol. 54, pp. 755-760, 2005. [14] P. J. Basser, J. Mattiello, and D. LeBihan, 'MR diffusion tensor spectroscopy and imaging,' Biophysical journal, vol. 66, pp. 259-267, 1994. [15] H. C. Torrey, 'Bloch equations with diffusion terms,' Physical Review, vol. 104, p. 563, 1956. [16] P. J. Basser and D. K. Jones, 'Diffusion‐tensor MRI: theory, experimental design and data analysis–a technical review,' NMR in Biomedicine, vol. 15, pp. 456-467, 2002. [17] C.-P. Lin, V. J. Wedeen, J.-H. Chen, C. Yao, and W.-Y. I. Tseng, 'Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms,' Neuroimage, vol. 19, pp. 482-495, 2003. [18] V. J. Wedeen, R. Wang, J. D. Schmahmann, T. Benner, W. Tseng, G. Dai, et al., 'Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers,' Neuroimage, vol. 41, pp. 1267-1277, 2008. [19] D. S. Tuch, 'Q‐ball imaging,' Magnetic Resonance in Medicine, vol. 52, pp. 1358-1372, 2004. [20] A. W. Anderson, 'Measurement of fiber orientation distributions using high angular resolution diffusion imaging,' Magnetic Resonance in Medicine, vol. 54, pp. 1194-1206, 2005. [21] P. J. Basser and C. Pierpaoli, 'A simplified method to measure the diffusion tensor from seven MR images,' Magnetic resonance in medicine, vol. 39, pp. 928-934, 1998. [22] C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis, 'Processing and visualization for diffusion tensor MRI,' Medical image analysis, vol. 6, pp. 93-108, 2002. [23] P. F. Góra, 'The theory of Brownian Motion: A Hundred Years’ Anniversary,' Marian Smoluchowski Institute of Physics, pp. 52-57, 2006. [24] E. L. Hahn, 'Spin echoes,' Physical Review, vol. 80, p. 580, 1950. [25] H. Y. Carr and E. M. Purcell, 'Effects of diffusion on free precession in nuclear magnetic resonance experiments,' Physical Review, vol. 94, p. 630, 1954. [26] F. Bloch, 'Nuclear induction,' Physical review, vol. 70, p. 460, 1946. [27] E. Stejskal and J. Tanner, 'Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient,' The journal of chemical physics, vol. 42, p. 288, 1965. [28] D. Le Bihan and E. Breton, 'Imagerie de diffusion in-vivo par resonance magnetique nucleaire,' Comptes-Rendus de l'Académie des Sciences, vol. 93, pp. 27-34, 1985. [29] D. Taylor and M. Bushell, 'The spatial mapping of translational diffusion coefficients by the NMR imaging technique,' Physics in Medicine and Biology, vol. 30, p. 345, 1985. [30] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, 'MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders,' Radiology, vol. 161, pp. 401-407, 1986. [31] S. Warach, D. Chien, W. Li, M. Ronthal, and R. Edelman, 'Fast magnetic resonance diffusion‐weighted imaging of acute human stroke,' Neurology, vol. 42, pp. 1717-1717, 1992. [32] G. Cleveland, D. Chang, C. Hazlewood, and H. Rorschach, 'Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water,' Biophysical journal, vol. 16, pp. 1043-1053, 1976. [33] P. Douek, R. Turner, J. Pekar, N. Patronas, and D. Le Bihan, 'MR color mapping of myelin fiber orientation,' Journal of Computer Assisted Tomography/Journal of Computer-Assisted Tomography, vol. 15, pp. 923-9, 1991. [34] S. Mori, Introduction to diffusion tensor imaging: Elsevier, 2007. [35] A. T. Van, C. Granziera, and R. Bammer, 'An Introduction to Model-Independent Diffusion MRI,' Topics in magnetic resonance imaging: TMRI, vol. 21, p. 339, 2010. [36] D. Jones, M. Horsfield, and A. Simmons, 'Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging,' Magn Reson Med, vol. 42, 1999. [37] C. Pierpaoli and P. J. Basser, 'Toward a quantitative assessment of diffusion anisotropy,' Magnetic resonance in medicine, vol. 36, pp. 893-906, 1996. [38] J. Mattiello, P. J. Basser, and D. LeBihan, 'Analytical Expressions for the< i> b</i> Matrix in NMR Diffusion Imaging and Spectroscopy,' Journal of magnetic resonance, Series A, vol. 108, pp. 131-141, 1994. [39] J. Mattiello, P. J. Basser, and D. Le Bihan, 'The b matrix in diffusion tensor echo‐planar imaging,' Magnetic Resonance in Medicine, vol. 37, pp. 292-300, 1997. [40] M. Neeman, J. P. Freyer, and L. O. Sillerud, 'A simple method for obtaining cross‐term‐free images for diffusion anisotropy studies in NMR microimaging,' Magnetic Resonance in Medicine, vol. 21, pp. 138-143, 1991. [41] M. Neeman, J. P. Freyer, and L. O. Sillerud, 'Pulsed-gradient spin-echo diffusion studies in NMR imaging. Effects of the imaging gradients on the determination of diffusion coefficients,' Journal of Magnetic Resonance (1969), vol. 90, pp. 303-312, 1990. [42] P. Hagmann, L. Jonasson, P. Maeder, J.-P. Thiran, V. J. Wedeen, and R. Meuli, 'Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond1,' Radiographics, vol. 26, pp. S205-S223, 2006. [43] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen, 'High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,' Magnetic Resonance in Medicine, vol. 48, pp. 577-582, 2002. [44] V. J. Wedeen, P. Hagmann, W. Y. I. Tseng, T. G. Reese, and R. M. Weisskoff, 'Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging,' Magnetic Resonance in Medicine, vol. 54, pp. 1377-1386, 2005. [45] S. Mori and P. van Zijl, 'Fiber tracking: principles and strategies–a technical review,' NMR in Biomedicine, vol. 15, pp. 468-480, 2002. [46] M. Lazar, D. M. Weinstein, J. S. Tsuruda, K. M. Hasan, K. Arfanakis, M. E. Meyerand, et al., 'White matter tractography using diffusion tensor deflection,' Human brain mapping, vol. 18, pp. 306-321, 2003. [47] G. J. Parker, C. A. Wheeler-Kingshott, and G. J. Barker, 'Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging,' Medical Imaging, IEEE Transactions on, vol. 21, pp. 505-512, 2002. [48] Y.-A. Huang, E. L. Wu, T.-D. Chiueh, and J.-H. Chen, 'W= 2 Acceleration Single carrier Wideband MRI Technique and Blur Mitigation Method.' [49] E. Wu, J. Chen, and T. Chiueh, 'Wideband MRI: a new dimension of MR image acceleration,' in Proceedings of the 17th annual meeting of ISMRM, Hawaii, USA, 2009, p. 2678. [50] E. Wu, J.-H. Chen, and T.-D. Chiueh, 'Wideband MRI: Theoretical analysis and its applications,' in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 5681-5684. [51] E. L. Wu, L.-W. Kuo, F.-H. Wu, C.-F. Hsu, C.-W. Hsieh, J.-H. Chen, et al., 'Ultra-fast brain MR imaging using simultaneous multi-slice acquisition (SMA) technique,' in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 2618-2621. [52] E. Wu, J. Chen, and T. Chiueh, 'A study of Wideband MR imaging: SNR and CNR.' [53] E. Wu, J. Chen, and T. Chiueh, 'Wideband MRI: A new dimension of MR image acceleration,' in Proceedings of the 17th Annual Meeting of ISMRM, 2009, p. 2678. [54] F. Wu, E. Wu, L. Kuo, J. Chen, and T. Chiueh, 'Wideband parallel imaging,' in Proceedings of the 17th Annual Meeting of ISMRM, Hawaii (ISMRM, Berkeley, CA, 2009), p. 2677. [55] E. Wu, K. Cho, T. Chiueh, and J. Chen, 'Reduction of Diffusion Tensor Imaging Acquisition Time with Wideband MR Imaging.' [56] J.-h. Chen, T.-d. Chiueh, E. L. Wu, and L.-w. Kuo, 'Method and apparatus for simultaneously acquiring multiple slices/slabs in a magnetic resonance imaging system,' ed: EP Patent 2,116,859, 2009. [57] C.-P. Lin, W.-Y. I. Tseng, H.-C. Cheng, and J.-H. Chen, 'Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts,' Neuroimage, vol. 14, pp. 1035-1047, 2001. [58] S. Brockstedt, C. Thomsen, R. Wirestam, S. Holtås, and F. Ståhlberg, 'Quantitative diffusion coefficient maps using fast spin-echo MRI,' Magnetic resonance imaging, vol. 16, pp. 877-886, 1998. [59] T. M. Shepherd, E. Özarslan, M. A. King, T. H. Mareci, and S. J. Blackband, 'Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus,' Neuroimage, vol. 32, pp. 1499-1509, 2006. [60] J. Zhang, P. van Zijl, and S. Mori, 'Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus,' Neuroimage, vol. 15, pp. 892-901, 2002. [61] I.-T. Lin, H.-C. Yang, L.-W. Kuo, C.-W. Hsieh, C. Yao, W.-H. Chang, et al., 'Non-invasive fiber tracking on diffusion tensor MRI using high-temperature superconducting tape RF coil,' in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2006, pp. 2329-2332. [62] Paulson, O. B., Hertz, M. M., Bolwig, T. G. and Lassen, N. A. “Filtration and diffusion of water across the blood-brain-barrier in man. Microvasc Res 13, 113-124, 1997. [63] Nicholson, C. and Phillips, J. M. Ion diffusion modified by tortuosity and volume fractional in the extracellular microenvironment of the rat cerebellum. Journal Physiol. 321, 225-257. 1981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4949 | - |
| dc.description.abstract | 擴散磁振造影現今在非侵入式醫學影像應用上,有非常重要的研究和貢獻。而其中的擴散張量造影,使用磁振造影儀器取得一組影像所花費的時間往往相當地長,因為至少要取得七張影像或者以上的影像。擴散權重影像 (Diffusion Weighted Image, DWI) 的品質容易受到雜訊的影響。要求的訊雜比不能夠太低,不開擴散梯度影像的訊雜比至少要40左右[1]。目前,已經有非常多不同的技術致力於克服取得DWI花費時間太長的問題,像是選取特定編碼方向來取得更好的DWI影像或者減少取樣點縮短掃描時間[2, 3]、使用主磁場較高的磁共振造影機器[4, 5]、使用表面線圈 (surface coil)和高溫導表面線圈降低熱雜訊來提高訊雜比[6]、以及平行影像技術 (Parallel Imaging)來縮短掃描時間。本研究是在探討寬頻磁振造影 (Wideband Magnetic Resonance Imaging, Wideband MRI) 技術應用於DTI上,達到縮短取得DTI所耗費的時間,或者耗費相同的掃描時間來提高DWI影像的解析度。本實驗室所研發的寬頻磁振造影技術,已成功應用在解剖影像、血管磁振造影影像和功能性磁振造影影像等。
在本論文中,我們探討Wideband DTI以及傳統DTI在單一方向神經束的差異性。藉由DTI所常用的資訊包括平均擴散系數指標 (Mean Diffusion Index, MD) 和非等向性強度指標 (Fractional Anisotropic Index, FA),這兩個指標分別代表水分子在空間中平均擴散的速率,以及擴散的非等向性。我們運用去離子水 (DT-Water) 和丙酮 (Acetone) 兩種液體以及健康大鼠來驗證Wideband DTI在水分子擴散係數的一致性和神經構造的對比度。應用在大鼠海馬迴以及胼胝體神經纖維結構上,最後也使用四倍加速的方式取得小鼠脊椎神經和五倍加速的方式取得大鼠脊椎神經DWI影像,並經由MIP影像處理,重建出由大鼠脊椎節和脊椎節中間沿伸出來的坐骨神經,也經由解剖影像的結果對照技術的可行性。藉此來說明Wideband MRI在未來醫學臨床應用以及神經相關研究上的潛力。 關鍵字:寬頻磁振造影、核磁共振影像、擴散張量影像 | zh_TW |
| dc.description.abstract | Diffusion magnetic resonance imaging, which is benefit for the non-invasive properties and provides the neural fiber information, has become an essential modality. Diffusion tensor imaging (DTI) costs a long scan time, since at least 7 diffusion weighted images are required. It needs at less 40 of SNR value in null DWI images. There are a lot of methods to reduce the scan time, such as partial k-space method, higher magnetic field or using surface coil to generate higher SNR, or parallel imaging method. In this research, we are aiming to implement Wideband MRI on DTI, in order to reduce scan time or trade the scan time for higher spatial resolution. Wideband MRI introduced by our lab was used to accelerate the scan time was successful apply in the anatomy scan, MR angiography, and functional MRI.
In this study, we research the difference in single direction neural fiber between conventional and SCWB DTI. In addition, we compare the mean diffusion index (MD), fractional anisotropic index (FA) and the angle variation acquired by Wideband DTI and conventional DTI with DT-Water, Acetone and healthy rat brain. And we utilize SCWB DTI technique to get higher image resolution in rat hippocampus and corpus callosum. Finally, we successfully complete to accelerate scan time by W=4 SCWB 3D DTI technique with mouse spine from 12 hours to three hours. And we complete to accelerate scan time by W=5 SCWB 3D DTI technique with rat spine from 22.5 hours to 4.5 hours. After MIP processing, we reconstruct the rat sciatica nerves and compare with anatomy images. It shows the capability and potentiality to the clinical application and the brain neural research. Keyword: Wideband MRI, Diffusion Tensor Imaging, Magnetic Resonance Imaging | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:50:32Z (GMT). No. of bitstreams: 1 ntu-103-R00945032-1.pdf: 6536081 bytes, checksum: 3c069c1e690e745fdf243b53af145494 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 圖目錄 viii 第1章 前言 1 1.1 研究動機 ……………………………………………………………….……..1 1.2 研究目的 ……………………………………………………………………...1 1.3 論文架構 ……………………………………………………………………...2 第2章 文獻探討……..………………………………………………………………...4 2.1 擴散磁振造影 ………………………………………………………………...4 2.1.1 水分子的擴散 ………………………………………………………...4 2.1.2 擴散張量影像 ………………………………………………………...6 2.2 利用擴散梯度產生擴散張量影像 …………………………………….……..6 2.2.1 擴散梯度 ………………………………………………………….…..6 2.2.2 擴散張量的計算 ………………………………………………….…..9 2.2.3 擴散因子矩陣(B-matrix)的計算方式 …………………………….…11 2.2.4 神經纖維追蹤技術的回顧 ……………………….…………………15 2.3 寬頻磁振造影 ……………………………………………………….………16 2.3.1 寬頻磁振造影技術 ……………………………………………….…16 2.3.2 寬頻磁振造影技術應用於擴散張量影像 …………………….……19 第3章 實驗方法 25 3.1 實驗系統 …………………………………………………………….………25 3.2 單載波寬頻擴散磁振造影 ……………………………………………….…26 3.2.1 單載波寬頻磁振造影技術提升時間和空間解析度 ……………….26 3.2.2 應用在大鼠的海馬迴 ……………………………………………….27 3.2.3 應用在大鼠的胼胝體 ……………………………………………….28 3.2.4 應用在小鼠的脊椎神經 ………………………………………….…29 3.2.5 應用在大鼠的脊椎神經 …………………………………………….30 3.3 資料分析方法 .…………………………………………….………………...31 第4章 實驗結果 33 4.1 單載波寬頻磁振造影技術提升時間和空間解析度 .………………………33 4.2 單載波寬頻磁振造影技術在擴散張量影像的應用 ……………………….36 4.2.1 應用在大鼠的海馬迴 ……………………………………………….36 4.2.2 應用在大鼠的胼胝體 …………………………………………….…38 4.2.3 應用在小鼠的脊椎神經 …………………………………………….40 4.2.4 應用在大鼠的脊椎神經 …………………………………………….42 第5章 討論 46 5.1單載波寬頻磁振造影技術提升空間解析度 …………………..……...46 5.2單載波寬頻磁振造影技術在擴散張量影像的應用 ………………….46 5.2.1應用在大鼠的海馬迴 ……………………………………….…46 5.2.2應用在大鼠的胼胝體 ………………………………………….48 5.2.3應用在小鼠和大鼠的脊椎神經 …………………………….…49 5.3單載波寬頻磁振造影技術在擴散權重影像的訊雜比 ……………….53 5.4單載波寬頻磁振造影技術在擴散張量影像的模糊 ………………….55 第6章 結論 60 第7章 未來展望 61 參考文獻 …………………………………………………………………………… 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 坐骨神經 | zh_TW |
| dc.subject | 寬頻磁振造影 | zh_TW |
| dc.subject | 核磁共振影像 | zh_TW |
| dc.subject | 擴散張量影像 | zh_TW |
| dc.subject | Wideband MRI | en |
| dc.subject | Diffusion Tensor Imaging | en |
| dc.subject | Magnetic Resonance Imaging | en |
| dc.subject | Sciatic Nerve | en |
| dc.title | 寬頻磁振造影技術在高時空解析度擴散張量影像之研究 | zh_TW |
| dc.title | Study of High Temporal and Spatial Resolution Diffusion Tensor Imaging based on Wideband MRI Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 闕志達 | |
| dc.contributor.oralexamcommittee | 林慶波,嚴震東,郭立威,謝松蒼,張允中 | |
| dc.subject.keyword | 寬頻磁振造影,核磁共振影像,擴散張量影像,坐骨神經, | zh_TW |
| dc.subject.keyword | Wideband MRI,Magnetic Resonance Imaging,Diffusion Tensor Imaging,Sciatic Nerve, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 6.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
