Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵(Chun-Han Ko)
dc.contributor.authorYen-Ting Liuen
dc.contributor.author劉彥廷zh_TW
dc.date.accessioned2021-06-15T11:31:14Z-
dc.date.available2021-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1]. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25(4), 184-192.
[2]. Bennington, C., & Pineault, I. (1999). Mass transfer in oxygen delignification systems: mill survey results, analysis and interpretation. Pulp & Paper Canada, 100, 123–131.
[3]. Bhardwaj, N. K., Bajpai, P., & Bajpai, P. K. (1996). Use of enzymes in modification of fibers for improved beatability. Journal of Biotechnology, 51(1), 21-26.
[4]. Boraston, A. B., Bolam, D. N., Gilbert, H. J., & Davies, G. J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal, 382(3), 769-781.
[5]. Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific & Industrial Research, 849-864.
[6]. Chen, X., Tao, L., Shekiro, J., Mohaghaghi, A., Decker, S., Wang, W., ... & Tucker, M. (2012). Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1) Experimental. Biotechnology for Biofuels, 5(1), 1.
[7]. Chua, M. G., & Wayman, M. (1979). Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 1. Composition and molecular weight distribution of extracted autohydrolysis lignin. Canadian Journal of Chemistry, 57(10), 1141-1149.
[8]. Dasari, R. K., & Berson, R. E. (2007). The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Applied Biochemistry and Biotechnology, 137(1-12), 289-299.
[9]. Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30(2), 219-230.
[10]. Felix, C. R., & Ljungdahl, L. G. (1993). The cellulosome: the exocellular organelle of Clostridium. Annual Reviews in Microbiology, 47(1), 791-819.
[11]. Ji, Y., Wheeler, M. C., & van Heiningen, A. (2007). Oxygen delignification kinetics: CSTR and batch reactor comparison. AIChE Journal, 53(10), 2681-2687.
[12]. Johansson, E., & Ljunggren, S. (1994). The kinetics of lignin reactions during oxygen bleaching. IV. The reactivities of different lignin model compounds and the influence of metal ions on the rate of degradation. Journal of Wood Chemistry and Technology, 14, 507–525.
[13]. Kumar, R., & Wyman, C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25(2), 302-314.
[14]. Li, J., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98(16), 3061-3068.
[15]. Garcia, O., Torres, A., Colom, J., Pastor, F., Diaz, P., & Vidal, T. (2002). Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose, 9(2), 115–125.
[16]. Gan, Q., Allen, S. J., & Taylor, G. (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry, 38(7), 1003-1018.
[17]. Gil, N., Gil, C., Amaral, M. E., Costa, A. P., & Duarte, A. P. (2009). Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochemical Engineering Journal, 46(2), 89-95. Gorski, D., Hill, J., Engstrand, P., & Johansson, L. (2010). Review: Reduction of energy consumption in TMP refining through mechanical pre-treatment of wood chips. Nordic Pulp & Paper Research Journal, 25(2), 156-161.
[18]. Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology, 85(5), 1241-1249.
[19]. Jackson, J. S., Heitmann, J. A., & Joyce, T. W. (1993). Enzymatic modifications of secondary fiber. Tappi Journal, 76(3), 147-154.
[20]. Jones, B. W., Venditti, R., Park, S., Jameel, H., & Koo, B. (2013). Enhancement inenzymatic hydrolysis by mechanical refining for pretreated hardwood ligno-cellulosics. Bioresource Technology, 147, 353–360.
[21]. Kerekes, R. J. (2005). Characterizing refining action in PFI mills. Tappi Journal, 4(3), 9-13.
[22]. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley VCH, Chichester.
[23]. Koo, B. W., Treasure, T. H., Jameel, H., Phillips, R. B., Chang, H. M., & Park, S. (2011). Reduction of enzyme dosage by oxygen delignification and mechanical refining for enzymatic hydrolysis of green liquor-pretreated hardwood. Applied Biochemistry and Biotechnology, 165(3-4), 832-844.
[24]. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729.
[25]. Kumar, L., Arantes, V., Chandra, R., Saddler, J., 2012. The lignin present in stream pretreated softwood binds enzymes and limits cellulose accessibility. Bioresource Technology 103, 201-208
[26]. Mendes, F.M., Siqueira, G., Carvalho, W., Ferraz, A., Milagres, A.M.F., 2011. Enzymatic hydrolysis of chemithermomechanically pretreated sugarscane bagasse and samples with reduced initial lignin content. American Institute of Chemical Engineers 27(2), 395-401.
[27]. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 64(2), 113-119.
[28]. Moniruzzaman, M. (1996). Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw. Applied Biochemistry and Biotechnology, 59(3), 283-297.
[29]. Moral, A., Monte Lara, M. C., Cabeza, E., & Blanco Suárez, Á. (2010). Morphological characterization of pulps to control paper properties. Cellulose Chemistry and Technology, 44(10), 473-480.
[30]. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.
[31]. Yasumura, P. K., DAlmeida, M. L. O., & Park, S. W. (2012). Multivariate statistical evaluation of physical properties of pulps refined in a PFI mill. O Papel, 73(3), 59-65.
[32]. Park, S., Venditti, R., Jameel, H., & Pawlak, J. (2006). Hard to remove water in cellulosefibers characterized by high resolution thermogravimetric analysis—Methodsdevelopment. Cellulose, 13(1), 23–30.
[33]. Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. In Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals (pp. 1069-1079).
[34]. Pere, J., Siika-Aho, M., & Viikari, L. (2000). Biomechanical pulping with enzymes: response of coarse mechanical pulp to enzymatic modification and secondary refining. Tappi Journal, 83(5), 85-85.
[35]. Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of municipal‐solid‐waste components. Biotechnology and Bioengineering, 31(3), 278-281.
[36]. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., & Castro, E. (2008). Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology, 42(2), 160-166.
[37]. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279-291.
[38]. Sawada, T., Kuwahara, M., Nakamura, Y., & Suda, H. (1987). Effect of a process of explosion for the effective utilization of biomass. Chem. Eng, 27, 686-693.
[39]. Segal, L. G. J. M. A., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.
[40]. Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6, 219-228.
[41]. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16), 3000-3011.
[42]. Söderström, J., Pilcher, L., Galbe, M., & Zacchi, G. (2002). Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Applied Biochemistry and Biotechnology, 98(1-9), 5-21.
[43]. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11.
[44]. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., & Hahn-Hägerdal, B. (1998). Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. In Biotechnology for Fuels and Chemicals (pp. 3-15).
[45]. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458-1480.
[46]. Walker, L. P., & Wilson, D. B. (1991). Enzymatic hydrolysis of cellulose: an overview. Bioresource Technology, 36(1), 3-14.
[47]. Wang, K., Wang, F., Jiang, J. X., Zhu, L. W., & Fan, H. Z. (2007). Structure, composition and enzymatic hydrolysis of steam-exploded lespedeza stalks. Forestry Studies in China, 9(2), 137-141.
[48]. Wu, S. F., Chang, H. M., Jameel, H., & Philips, R. (2012). Effect of additives on polysaccharide retention in green liquor pretreatment of loblolly pine for enzymatic hydrolysis. Journal of Wood Chemistry and Technology, 32(4), 317-327.
[49]. Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate polymers, 79(1), 192-199.
[50]. Yu, Z., Jameel, H., Chang, H. M., & Park, S. (2011). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology, 102(19), 9083-9089.
[51]. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and bioengineering, 88(7), 797-824.
[52]. Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64(3), 474-485.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49491-
dc.description.abstract造紙行業是個不可缺少的重要產業。而在造紙過程中,所生產出來之產品均經過打漿處理,而此處理方式會增加纖維的帚化及接合能力。第二代生質燃料是受到高度重視的新能源,而其透過水解木質纖維素,作為生產生質燃料的主要來源。將酵素加入紙漿中進行一段時間的處理後,纖維素酶添加量對紙漿所產生之影響也有進一步的討論,隨著酵素劑量的增加,其所得到的還原糖產量也隨之上升。然而酵素劑量與其酵素水解效率並非成正比關係。隨著使用不同的酵素劑量進行水解,其酵素水解效率也不盡相同。過高及過低的酵素劑量不能使酵素水解效率達到最好的狀況,需要適當的酵素劑量才能達到最好的水解效率。
而在水解實驗方面,較多的全纖維素可以有較高的可及性及反應性,此結果可以由轉變出來之還原糖量所得知。較高的結晶度(CI)會降低酵素對纖維的可及性,而木質素則會在酵素水解纖維素時產生阻礙。增加反應表面積也可以增加水解效率,但還原糖變化沒有隨著纖維尺寸改變而有明顯的變化。
本研究藉由不同前處理、酵素添加量及打將能量消耗,來探討對不同生質物所產生之影響。而不同生質物的特性與酵素水解後所產生之還原糖產量之關聯也在本研究中進行進一步的探討。
zh_TW
dc.description.abstractPaper industry is an important and indispensable industry. During paper making process, the production fibers has to be refined, and this mechanically treated has present its bonding potential. Refining is a highly energy consuming stage, therefore, various treated of cellulase to fibers as a pretreatment were investigated to reduce the energy consumption and improve paper properties. The enzyme wat added into pulp and treated for a couple of time. The impact of cellulase loading that added to the pulp was identified, with the enzyme loading increasing, the conversion of sugars is increased. However, enzyme loading is not proportional to the enzyme efficiency. With different dosages for the hydrolysis, different enzyme efficiency was measured. Both excessive and low loading of cellulase could not achieve optimized enzyme efficiency, and moderate loading of cellulase could have achieved.
In the aspect of hydrolysis, more holocellulose have more accessibility and reactivity which are estimated by conversion of sugars. Higher crystallinity index (CI) decreased the accessibility of the enzyme, and lignin was also an obstacle that obstruct the enzyme hydrolysis with cellulose. The surface area can increase the efficiency, but the conversion has no significant different from the fiber sizes.
This study investigated different properties of biomass by different pretreatments, enzyme loading and the refined energy demand. Correlation between properties of different biomass and glucose yield after enzyme hydrolysis were also researched.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:31:14Z (GMT). No. of bitstreams: 1
ntu-105-R03625042-1.pdf: 2477341 bytes, checksum: 01898701d996d994efb0c38375f450af (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
Abbreviation iv
Contents vi
Figures Index viii
Tables Index x
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Structure of Lignocellulose 4
2.1.1 Cellulose 4
2.1.2 Hemicellulose 5
2.1.3 Lignin 5
2.2 Enzymatic Hydrolysis 6
2.3 Refining 8
2.3.1 Hollander Beater 9
2.3.2 PFI Mill 10
2.3.3 Specific Edge Load Theory 11
2.4 Catalytic Domains and Carbohydrate Binding Modules 12
2.5 Pretreatment 13
2.5.1 Fiber Size 15
2.5.2 Steam Explosion 16
2.5.3 Delignification 18
Chapter 3 Materials and Method 20
3.1 Materials 20
3.1.1 Substrates 20
3.1.2 Enzyme 21
3.2 Experiment and Analytical Methods 22
3.2.1 Materials Sieved 22
3.2.2 PFI Refining 22
3.2.3 Hollander Beater Refining 23
3.2.4 CSF Test 24
3.2.5 Enzyme Hydrolysis 24
3.2.6 Reducing Sugar Determination 25
3.2.7 Fiber Morphology 25
3.2.8 X-ray Diffraction Measurements 26
Chapter 4 Result and Discussion 27
4.1 Properties of Lignocellulose 27
4.1.1 Chemical Composition of Pulps 27
4.1.2 Crystallinity Indexes 28
4.2 The Effect of Different Substrate 30
4.2.1 The Reducing Sugar on Hydrolysis 30
4.2.2 The Enzyme Efficiency 31
4.2.3 The effect on the Hollander beater pretreatment 33
4.2.4 Effects on PFI Pretreatment 35
4.2.5 Crystallinity Indexes 36
4.2.6 Fiber Morphology 38
4.3 The Effect of Different Enzyme Loading 42
4.3.1 The Reducing Sugar on Hydrolysis 42
4.3.2 The Enzyme Efficiency 46
4.3.3 The degree of Crystallinity 50
4.3.4 Fiber Morphology 52
4.4 Effects of Different Pretreatments 57
4.4.1 The Pretreatment Effect on Hydrolysis 58
4.4.2 Effects on Refining Pretreatment 63
4.4.3 Fiber Morphology 67
Chapter 5 Conclusion 75
Reference 77
dc.language.isoen
dc.subject結晶度zh_TW
dc.subject可及性zh_TW
dc.subject打漿zh_TW
dc.subject酵素水解zh_TW
dc.subject前處理zh_TW
dc.subjectpretreatmenten
dc.subjectaccessibilityen
dc.subjectcrystallinityen
dc.subjectenzyme hydrolysisen
dc.subjectrefiningen
dc.title不同前處理生質物對纖維素酶水解之影響zh_TW
dc.titleEffect of Pretreatments of Biomass on Enzymatic Hydrolysisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施增廉,徐秀福(Hsiu-Fu Hsu)
dc.subject.keyword前處理,可及性,結晶度,酵素水解,打漿,zh_TW
dc.subject.keywordpretreatment,accessibility,crystallinity,enzyme hydrolysis,refining,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201602877
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved