Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永耀(Yung-Yaw Chen)
dc.contributor.authorHung-En Chenen
dc.contributor.author陳宏恩zh_TW
dc.date.accessioned2021-06-15T11:31:05Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] D. Reid, S. Samangooei, C. Chen, M. Nixon, and A. Ross, 'Soft biometrics for surveillance: an overview,' Machine learning: theory and applications. Elsevier, pp. 327-352, 2013.
[2] A. Dantcheva, C. Velardo, A. D’Angelo, and J.-L. Dugelay, 'Bag of soft biometrics for person identification,' Multimedia Tools and Applications, vol. 51, pp. 739-777, 2010.
[3] J. A. Unar, W. C. Seng, and A. Abbasi, 'A review of biometric technology along with trends and prospects,' Pattern Recognition, vol. 47, pp. 2673-2688, 2014.
[4] O. A. Arigbabu, S. M. Ahmad, W. A. Adnan, S. Yussof, V. Iranmanesh, and F. L. Malallah, 'Estimating body related soft biometric traits in video frames,' ScientificWorldJournal, vol. 2014, p. 460973, 2014.
[5] V. Srinivasan, J. Stankovic, and K. Whitehouse, 'Using height sensors for biometric identification in multi-resident homes,' in International Conference on Pervasive Computing, 2010, pp. 337-354.
[6] M. developers. (2015). Kinect V2 Forum. Available: https://social.msdn.microsoft.com/Forums/en-US/6cd20082-0713-4edd-a0b3-45c575f1a8b2/problem-in-depth-artefacts-miss-information-and-other-phenomena-in-depth-adjusting-the?forum=kinectv2sdk
[7] J. Valcik, J. Sedmidubsky, and P. Zezula, 'Improving Kinect-Skeleton Estimation,' in International Conference on Advanced Concepts for Intelligent Vision Systems, 2015, pp. 575-587.
[8] A. K. Jain and A. Kumar, 'Biometric recognition: an overview,' in Second Generation Biometrics: The Ethical, Legal and Social Context, ed: Springer, 2012, pp. 49-79.
[9] J. Neves, F. Narducci, S. Barra, and H. Proença, 'Biometric recognition in surveillance scenarios: a survey,' Artificial Intelligence Review, pp. 1-27, 2016.
[10] M. Liu, 'Fingerprint classification based on Adaboost learning from singularity features,' Pattern Recognition, vol. 43, pp. 1062-1070, 2010.
[11] A. Kumar and K. V. Prathyusha, 'Personal authentication using hand vein triangulation and knuckle shape,' IEEE Transactions on Image processing, vol. 18, pp. 2127-2136, 2009.
[12] A. Jain, R. Bolle, and S. Pankanti, Biometrics: personal identification in networked society vol. 479: Springer Science & Business Media, 2006.
[13] M. Sofka and C. V. Stewart, 'Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,' IEEE transactions on medical imaging, vol. 25, pp. 1531-1546, 2006.
[14] A. Jain, A. A. Ross, and K. Nandakumar, Introduction to biometrics: Springer Science & Business Media, 2011.
[15] A. K. Jain and S. Z. Li, Handbook of face recognition: Springer, 2011.
[16] U. Park, H.-C. Choi, A. K. Jain, and S.-W. Lee, 'Face tracking and recognition at a distance: A coaxial and concentric PTZ camera system,' IEEE Transactions on Information Forensics and Security, vol. 8, pp. 1665-1677, 2013.
[17] DEEPNETSECURITY. TYPESENSE. Available: http://www.deepnetsecurity.com/tokens/bio/typesense/
[18] A. Fazel and S. Chakrabartty, 'An overview of statistical pattern recognition techniques for speaker verification,' IEEE Circuits and Systems Magazine, vol. 11, pp. 62-81, 2011.
[19] A. K. Jain, S. C. Dass, and K. Nandakumar, 'Can soft biometric traits assist user recognition?,' in Defense and Security, 2004, pp. 561-572.
[20] M. S. Nixon, P. L. Correia, K. Nasrollahi, T. B. Moeslund, A. Hadid, and M. Tistarelli, 'On soft biometrics,' Pattern Recognition Letters, vol. 68, pp. 218-230, 2015.
[21] A. K. Jain, A. Ross, and S. Prabhakar, 'An introduction to biometric recognition,' IEEE Transactions on circuits and systems for video technology, vol. 14, pp. 4-20, 2004.
[22] A. K. Jain, S. C. Dass, and K. Nandakumar, 'Soft biometric traits for personal recognition systems,' in Biometric authentication, ed: Springer, 2004, pp. 731-738.
[23] N. Kaushik and A. Mittal, 'A Novel Beard Removal Method based on Structural Similarity and Co-ordinate Transformations,' in 2006 Annual IEEE India Conference, 2006, pp. 1-6.
[24] E. Patterson, A. Sethuram, M. Albert, K. Ricanek, and M. King, 'Aspects of age variation in facial morphology affecting biometrics,' in Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International Conference on, 2007, pp. 1-6.
[25] S. Baluja and H. A. Rowley, 'Boosting sex identification performance,' International Journal of computer vision, vol. 71, pp. 111-119, 2007.
[26] G. Johansson, 'Visual perception of biological motion and a model for its analysis,' Perception & psychophysics, vol. 14, pp. 201-211, 1973.
[27] T. K. Lee, M. Belkhatir, and S. Sanei, 'A comprehensive review of past and present vision-based techniques for gait recognition,' Multimedia Tools and Applications, vol. 72, pp. 2833-2869, 2014.
[28] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, 'The humanid gait challenge problem: Data sets, performance, and analysis,' IEEE transactions on pattern analysis and machine intelligence, vol. 27, pp. 162-177, 2005.
[29] S. Das and S. Meher, 'Automatic extraction of height and stride parameters for human recognition,' in Engineering and Systems (SCES), 2013 Students Conference on, 2013, pp. 1-6.
[30] E. Jeges, I. Kispal, and Z. Hornak, 'Measuring human height using calibrated cameras,' in 2008 Conference on Human System Interactions, 2008, pp. 755-760.
[31] C. BenAbdelkader, R. Cutler, and L. Davis, 'Person identification using automatic height and stride estimation,' in Pattern Recognition, 2002. Proceedings. 16th International Conference on, 2002, pp. 377-380.
[32] S. Denman, C. Fookes, A. Bialkowski, and S. Sridharan, 'Soft-Biometrics: Unconstrained Authentication in a Surveillance Environment,' pp. 196-203, 2009.
[33] C. BenAbdelkader, R. Cutler, and L. Davis, 'View-invariant estimation of height and stride for gait recognition,' in International Workshop on Biometric Authentication, 2002, pp. 155-167.
[34] C. Madden and M. Piccardi, 'Height measurement as a session-based biometric for people matching across disjoint camera views,' in Image and Vision Computing New Zealand, 2005, pp. 282-286.
[35] H.-C. Tsai, W.-C. Wang, J.-C. Wang, and J.-F. Wang, 'Long distance person identification using height measurement and face recognition,' in TENCON 2009-2009 IEEE Region 10 Conference, 2009, pp. 1-4.
[36] A. Criminisi, I. Reid, and A. Zisserman, 'Single view metrology,' International Journal of Computer Vision, vol. 40, pp. 123-148, 2000.
[37] H.-W. Lee, C.-H. Liu, K.-T. Chu, Y.-C. Mai, P.-C. Hsieh, K.-C. Hsu, et al., 'Kinect Who's Coming—Applying Kinect to Human Body Height Measurement to Improve Character Recognition Performance,' Smart Science, vol. 3, pp. 117-121, 2015.
[38] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, et al., 'Real-time human pose recognition in parts from single depth images,' Communications of the ACM, vol. 56, pp. 116-124, 2013.
[39] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik, 'Evaluating and improving the depth accuracy of Kinect for Windows v2,' IEEE Sensors Journal, vol. 15, pp. 4275-4285, 2015.
[40] Microsoft. (2014). Windows Dev Center. Available: https://developer.microsoft.com/en-us/windows/kinect
[41] A. Mobini, S. Behzadipour, and M. Saadat Foumani, 'Accuracy of Kinect’s skeleton tracking for upper body rehabilitation applications,' Disability and Rehabilitation: Assistive Technology, vol. 9, pp. 344-352, 2014.
[42] S. Phommahavong, D. Haas, J. Yu, S. Krüger-Ziolek, K. Möller, and J. Kretschmer, 'Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy,' Current Directions in Biomedical Engineering, vol. 1, pp. 184-187, 2015.
[43] X. Xu and R. W. McGorry, 'The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures,' Applied ergonomics, vol. 49, pp. 47-54, 2015.
[44] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, 'Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling,' Remote Sensing, vol. 7, pp. 13070-13097, 2015.
[45] WIKIPEDIA. (2016). RANSAC. Available: https://en.wikipedia.org/wiki/RANSAC
[46] B. Engineering. Course Web Pages. Available: https://courses.soe.ucsc.edu/
[47] Reelshub.com. (2015). Available: http://www.reelshub.com/bone-anatomy-of-the-human-body/
[48] Shoulderdoc. Bones & Joints of the Shoulder. Available: https://www.shoulderdoc.co.uk/article/1177
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49488-
dc.description.abstract近年來,監控式攝影機在全球已經越來越普及,致力於將監控系統自動化以辨識景中人物的研究愈加受重視。然而,一般傳統式生物特徵,利如臉、指紋或是虹膜等,都會需要使用者的配合才能取得足夠的資料進行分析;若要將其應用在監控環境中,考量到人物可能會朝向任何方向,所處的距離範圍也可能差異非常大,取得之資料品質會受到嚴重影響。為了解決這一問題,一種稱為軟式特徵的生物特徵正開始發展,例如髮色、種族或是身高等。相較於傳統生物特徵,軟式特徵較不會受距離遠近影響,而且也無需使用者特別的合作就能取得,是一種特別適合在監控環境中使用的生物特徵。而在眾多軟式特徵中,身高是一個較具分辨力且容易被看見的特徵,所以,本論文提出一套基於Kinect V2所提供之人體骨架計算肩膀高度的方法。在人體骨架資訊輸入後,我們會先過濾掉不正確的骨架,以確保後續計算的準確性;在得到初步估算的肩膀高度後,一個經由統計而得的補償方程式可將估算之肩高修正至我們定義之真實肩膀高度。最後,實驗結果顯示出,靜態下的量測平均誤差是16mm,在動態下的量測平均誤差和標準差分別為16mm和19mm。另外,在多人環境下測試的結果指出,即使是在遮蔽頻繁的狀況下,我們的方法仍舊能保持單人環境時的表現。zh_TW
dc.description.abstractInterest in the security of individuals has increased in recent years. This trend led to much wider deployment of surveillance cameras both indoor and outdoor. Consequently, more approaches are focusing on improving the mediocre performance of classical biometrics, such as face or iris, under uncontrolled conditions such as illumination and facing directions. To address the problems, soft biometrics, including hair color, ethnicity or height, were proposed. These type of biometrics can be obtained at a distance without subject cooperation, making them ideal for surveillance applications. Among many soft biometric traits, the height trait is one of the most visible and distinctive traits in unconstrained environment. Therefore, an approach to measure human shoulder height based on Kinect V2 skeleton is proposed to assist in human identification. By analyzing the data provided by Kinect V2 skeleton, the preliminary shoulder height can be estimated. Then, a compensation is applied to make the estimated shoulder height match with human true shoulder height. The results show that the accuracy error in static pose is 16mm and the mean absolute error and fluctuation deviation in dynamic pose are 16mm and 19mm, respectively. In addition, the test results in multi-person scenarios show that the proposed approach is more resistant to occlusions, which indicates more applicable in real scenes.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:31:05Z (GMT). No. of bitstreams: 1
ntu-105-R02921063-1.pdf: 5871744 bytes, checksum: f95086f6dda9f6fcb1fa103a5f133510 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Problem Formulation 2
1.3 Soft Biometrics 3
1.4 Proposed Approach 5
1.5 Thesis Overview 6
Chapter 2 Previous Work 8
2.1 Biometrics 9
2.1.1 Biometrics overview 10
2.1.2 Soft Biometrics 17
2.2 Body Height Measurement 23
2.3 Summary of Body Height Measurement Methods 28
2.4 Kinect V2 Depth Sensor and Skeleton Detection 29
Chapter 3 Kinect V2 Calibration and Artifacts 31
3.1 Kinect V2 Setup 31
3.2 Point Height Calibration 32
3.2.1 Point Height Estimation 34
3.2.2 Floor Plane Estimation 34
3.2.3 Height Table 37
3.2.4 Interpolation 41
3.2.5 Test Result of Point Height Calibration 42
3.3 Kinect V2 Artifact 45
Chapter 4 Shoulder Height Measurement 48
4.1 Joints Selection from Kinect V2 Skeleton 49
4.1.1 Joints to be compared 49
4.1.2 Testing Design 50
4.1.3 Comparison. 50
4.2 Reliable Skeleton Filtering 54
4.2.1 Outliers Observation 54
4.2.2 Filtering Rules 61
4.3 Kinect V2 Shoulder Joint Analysis and Estimation 67
4.3.1 Impact Factor Analysis 67
4.3.2 Shoulder Height Estimation 73
4.4 Shoulder Height Compensation 74
4.4.1 True Human Shoulder Height Definition 75
4.4.2 Compensation Formulation 76
Chapter 5 Experiment Results 79
5.1 Testing Criteria 80
5.2 Results of Shoulder Height Measurement 83
5.2.1 Static Pose 83
5.2.2 Dynamic Pose 86
5.3 Tests in Multi-person Scenarios 89
5.4 Comparisons and Discussions 93
Chapter 6 Conclusions and Future Work 95
REFERENCES 96
dc.language.isoen
dc.title利用Kinect V2在監控環境下量測人體肩膀高度zh_TW
dc.titleHuman Shoulder Height Measurement based on Kinect V2 Skeleton under Surveillance Conditionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林文澧(Win-Li Lin),顏家鈺(Jia-Yush Yen),何明志(Ming-Chih Ho)
dc.subject.keyword軟式生物特徵,身高量測,Kinect V2,Kinect V2之人體骨架偵測,zh_TW
dc.subject.keywordsoft biometrics,height estimation,Kinect V2,Kinect skeleton,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201602900
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved