Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49476
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬(Wan-Wan Lin)
dc.contributor.authorChia-Che Wuen
dc.contributor.author吳嘉哲zh_TW
dc.date.accessioned2021-06-15T11:30:30Z-
dc.date.available2025-08-19
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationAhlstrom, A., Tallgren, M., Peltonen, S., Pettila, V. (2004). Evolution and predictive power of serum cystatin C in acute renal failure. Clin Nephrol, 62(5), 344-350. doi:10.5414/cnp62344
Ahn, S. Y., Kim, Y., Kim, S. T., Swat, W., Miner, J. H. (2013). Scaffolding proteins DLG1 and CASK cooperate to maintain the nephron progenitor population during kidney development. J Am Soc Nephrol, 24(7), 1127-1138. doi:10.1681/ASN.2012111074
Allen, I. C. (2014). Non-Inflammasome Forming NLRs in Inflammation and Tumorigenesis. Front Immunol, 5, 169. doi:10.3389/fimmu.2014.00169
Arnoult, D., Soares, F., Tattoli, I., Castanier, C., Philpott, D. J., Girardin, S. E. (2009). An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci, 122(Pt 17), 3161-3168. doi:10.1242/jcs.051193
Atasoy, D., Schoch, S., Ho, A., Nadasy, K. A., Liu, X., Zhang, W. , Mukherjee, K., Nosyreva, E. D., Fernandez-Chacon, R., Missler, M., Kavalali, E., Sudhof, T. C. (2007). Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci U S A, 104(7), 2525-2530. doi:10.1073/pnas.0611003104
Baines, A. J. (1996). Caenorhabditis elegans LIN-2A and mammalian neuronal CASK are prototypical members of a subfamily of MAGUKs (membrane-associated guanylate kinases) characterized by a common kinase-like domain and a guanylate kinase domain predicted to bind ATP. Biochem J, 320 ( Pt 2), 694-696.
Beaudreuil, S., Zhang, X., Herr, F., Harper, F., Candelier, J. J., Fan, Y., Yeter, H., Dudreuilh, C., Lecru, L., Vazquez, A., Charpentier, B., Lorenzo, H.K., Durrbach, A. (2019). Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One, 14(7), e0219353. doi:10.1371/journal.pone.0219353
Biju, M. P., Akai, Y., Shrimanker, N., Haase, V. H. (2005). Protection of HIF-1-deficient primary renal tubular epithelial cells from hypoxia-induced cell death is glucose dependent. Am J Physiol Renal Physiol, 289(6), F1217-1226. doi:10.1152/ajprenal.00233.2005
Charlton, J. R., Portilla, D., Okusa, M. D. (2014). A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant, 29(7), 1301-1311. doi:10.1093/ndt/gft510
Chen, R., Lai, U. H., Zhu, L., Singh, A., Ahmed, M., Forsyth, N. R. (2018). Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front Cell Dev Biol, 6, 132. doi:10.3389/fcell.2018.00132
Devarajan, P. (2006). Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol, 17(6), 1503-1520. doi:10.1681/ASN.2006010017
Devarajan, P. (2010). Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton), 15(4), 419-428. doi:10.1111/j.1440-1797.2010.01317.x
Dimitratos, S. D., Stathakis, D. G., Nelson, C. A., Woods, D. F., Bryant, P. J. (1998). The location of human CASK at Xp11.4 identifies this gene as a candidate for X-linked optic atrophy. Genomics, 51(2), 308-309. doi:10.1006/geno.1998.5404
Dimitratos, S. D., Woods, D. F., Bryant, P. J. (1997). Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev, 63(1), 127-130. doi:10.1016/s0925-4773(97)00668-0
Fahling, M., Mathia, S., Paliege, A., Koesters, R., Mrowka, R., Peters, H., Persson, P. B., Neumayer, H. H., Bachmann, S., Rosenberger, C. (2013). Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI. J Am Soc Nephrol, 24(11), 1806-1819. doi:10.1681/ASN.2013030281
Fu, Q., Colgan, S. P., Shelley, C. S. (2016). Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res, 14(1), 15-39. doi:10.3121/cmr.2015.1282
Haase, M., Bellomo, R., Devarajan, P., Schlattmann, P., Haase-Fielitz, A., Group, N. M.-a. I. (2009). Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis, 54(6), 1012-1024. doi:10.1053/j.ajkd.2009.07.020
Haase, V. H. (2006). Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol, 291(2), F271-281. doi:10.1152/ajprenal.00071.2006
Hackett, A., Tarpey, P. S., Licata, A., Cox, J., Whibley, A., Boyle, J., Rogers, C., Grigg, J., Partington, M., Stevenson, R. E., Tolmie, J., Yates, J. R., Turner, G., Wilson, M., Futreal, A. P., Corbett, M., Shaw, M., Gecz, J., Raymond, F. L., Stratton, M. R., Schwartz, C. E., Abidi, F. E. (2010). CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet, 18(5), 544-552. doi:10.1038/ejhg.2009.220
Hata, Y., Butz, S., Sudhof, T. C. (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16(8), 2488-2494.
Hirakawa, Y., Tanaka, T., Nangaku, M. (2017). Renal Hypoxia in CKD; Pathophysiology and Detecting Methods. Front Physiol, 8, 99. doi:10.3389/fphys.2017.00099
Hsueh, Y. P. (2009). Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol, 66(4), 438-443. doi:10.1002/ana.21755
Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H.,
Pugh, C. W., Ratcliffe, P. J. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468-472. doi:10.1126/science.1059796
Kapitsinou, P. P., Sano, H., Michael, M., Kobayashi, H., Davidoff, O., Bian, A., Yao, B., Zhang, M. Z., Harris, R. C., Duffy, K. J., Erickson-Miller, C. L., Sutton, T. A., Haase, V. H. (2014). Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest, 124(6), 2396-2409. doi:10.1172/JCI69073
Killackey, S. A., Rahman, M. A., Soares, F., Zhang, A. B., Abdel-Nour, M., Philpott, D. J., Girardin, S. E. (2019). The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem, 453(1-2), 187-196. doi:10.1007/s11010-018-3444-3
Kors, L., Rampanelli, E., Stokman, G., Butter, L. M., Held, N. M., Claessen, N., Larsen, P. W. B., Verheij, J., Zuurbier, C. J., Liebisch, G., Schmitz, G., Girardin, S. E., Florquin, S., Houtkooper, R. H., Leemans, J. C. (2018). Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic steatosis and metabolic syndrome. Biochim Biophys Acta Mol Basis Dis, 1864(5 Pt A), 1883-1895. doi:10.1016/j.bbadis.2018.03.003
Leber, A., Hontecillas, R., Tubau-Juni, N., Zoccoli-Rodriguez, V., Hulver, M., McMillan, R., Eden, K., Allen, I. C., Bassaganya-Riera, J. (2017). NLRX1 Regulates Effector and Metabolic Functions of CD4(+) T Cells. J Immunol, 198(6), 2260-2268. doi:10.4049/jimmunol.1601547
Lei, Y., Wen, H., Yu, Y., Taxman, D. J., Zhang, L., Widman, D. G., Swanson, K. V., Wen, K. W., Damania, B., Moore, C. B., Giguere, P. M., Siderovski, D. P., Hiscott, J., Razani, B., Semenkovich, C. F., Chen, X., Ting, J. P. (2012). The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity, 36(6), 933-946. doi:10.1016/j.immuni.2012.03.025
Levey, A. S., Becker, C., Inker, L. A. (2015). Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA, 313(8), 837-846. doi:10.1001/jama.2015.0602
Levey, A. S., James, M. T. (2017). Acute Kidney Injury. Ann Intern Med, 167(9), ITC66-ITC80. doi:10.7326/AITC201711070
Li, H., Zhang, S., Li, F., Qin, L. (2016). NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol Immunol, 76, 90-97. doi:10.1016/j.molimm.2016.06.013
Ma, D., Zhao, Y., She, J., Zhu, Y., Zhao, Y., Liu, L., Zhang, Y. (2019). NLRX1 alleviates lipopolysaccharide-induced apoptosis and inflammation in chondrocytes by suppressing the activation of NF-kappaB signaling. Int Immunopharmacol, 71, 7-13. doi:10.1016/j.intimp.2019.03.001
Manotham, K., Tanaka, T., Matsumoto, M., Ohse, T., Inagi, R., Miyata, T., Kurokawa, K., Fujita, T., Ingelfinger, J. R., Nangaku, M. (2004). Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int, 65(3), 871-880. doi:10.1111/j.1523-1755.2004.00461.x
Marxsen, J. H., Stengel, P., Doege, K., Heikkinen, P., Jokilehto, T., Wagner, T., Jelkmann, W., Jaakkola, P., Metzen, E. (2004). Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J, 381(Pt 3), 761-767. doi:10.1042/BJ20040620
Moog, U., Kutsche, K., Kortum, F., Chilian, B., Bierhals, T., Apeshiotis, N., Balg, S.
Chassaing, N., Coubes, C., Das, S., Engels, H., Van Esch, H., Grasshoff, U., Heise, M., Isidor, B., Jarvis, J., Koehler, U., Martin, T., Oehl-Jaschkowitz, B., Ortibus, E., Pilz, D. T., Prabhakar, P., Rappold, G., Rau, I., Rettenberger, G., Schluter, G., Scott, R. H., Shoukier, M. ., Wohlleber, E., Zirn, B., Dobyns, W. B., Uyanik, G. (2011). Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet, 48(11), 741-751. doi:10.1136/jmedgenet-2011-100218
Moore, C. B., Bergstralh, D. T., Duncan, J. A., Lei, Y., Morrison, T. E., Zimmermann, A. G., Accavitti-Loper, M. A., Madden, V. J., Sun, L., Ye, Z., Lich, J. D., Heise, M. T., Chen, Z., Ting, J. P. (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature, 451(7178), 573-577. doi:10.1038/nature06501
Najm, J., Horn, D., Wimplinger, I., Golden, J. A., Chizhikov, V. V., Sudi, J., Christian, S. L., Ullmann, R., Kuechler, A., Haas, C. A., Flubacher, A., Charnas, L. R., Uyanik, G., Frank, U., Klopocki, E., Dobyns, W. B., Kutsche, K. (2008). Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet, 40(9), 1065-1067. doi:10.1038/ng.194
Nangaku, M., Eckardt, K. U. (2007). Hypoxia and the HIF system in kidney disease. J Mol Med (Berl), 85(12), 1325-1330. doi:10.1007/s00109-007-0278-y
Natarajan, B., Arige, V., Khan, A. A., Reddy, S. S., Santhoshkumar, R., Sagar, B. K. C., Barthwal, Manoj K., Mahapatra, N. R. (2020). Hypoxia-mediated regulation of mitochondrial transcription factors: Implications for hypertensive renal physiology. bioRxiv. doi:10.1101/816470
Norman, J. T., Clark, I. M., Garcia, P. L. (2000). Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int, 58(6), 2351-2366. doi:10.1046/j.1523-1755.2000.00419.x
Norman, J. T., Orphanides, C., Garcia, P., Fine, L. G. (1999). Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp Nephrol, 7(5-6), 463-469. doi:10.1159/000020625
Ortmann, B., Druker, J., Rocha, S. (2014). Cell cycle progression in response to oxygen levels. Cell Mol Life Sci, 71(18), 3569-3582. doi:10.1007/s00018-014-1645-9
Pieczynski, J., Margolis, B. (2011). Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol, 300(3), F589-601. doi:10.1152/ajprenal.00615.2010
Qi, J., Su, Y., Sun, R., Zhang, F., Luo, X., Yang, Z., Luo, X. (2005). CASK inhibits ECV304 cell growth and interacts with Id1. Biochem Biophys Res Commun, 328(2), 517-521. doi:10.1016/j.bbrc.2005.01.014
Ronco, C., Bellomo, R., Kellum, J. A. (2019). Acute kidney injury. Lancet, 394(10212), 1949-1964. doi:10.1016/S0140-6736(19)32563-2
Scantlebery, A. M. L., Uil, M., Butter, L. M., Poelman, R., Claessen, N., Girardin, S. E., Florquin, S., Roelofs, Jjth., Leemans, J. C. (2019). NLRX1 does not play a role in diabetes nor the development of diabetic nephropathy induced by multiple low doses of streptozotocin. PLoS One, 14(3), e0214437. doi:10.1371/journal.pone.0214437
Schuh, K., Uldrijan, S., Gambaryan, S., Roethlein, N., Neyses, L. (2003). Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem, 278(11), 9778-9783. doi:10.1074/jbc.M212507200
Singh, K., Roy, M., Prajapati, P., Lipatova, A., Sripada, L., Gohel, D., Singh, A., Mane, M., Godbole, M. M., Chumakov, P. M., Singh, R. (2019). NLRX1 regulates TNF-alpha-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis, 1865(6), 1460-1476. doi:10.1016/j.bbadis.2019.02.018
Srisawat, N., Wen, X., Lee, M., Kong, L., Elder, M., Carter, M., Unruh, M., Finkel, K., Vijayan, A., Ramkumar, M., Paganini, E., Singbartl, K., Palevsky, P. M., Kellum, J. A. (2011). Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol, 6(8), 1815-1823. doi:10.2215/CJN.11261210
Srivastava, S., McMillan, R., Willis, J., Clark, H., Chavan, V., Liang, C., Zhang, H., Hulver, M., Mukherjee, K. (2016). X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun, 4, 30. doi:10.1186/s40478-016-0295-6
Stokman, G., Kors, L., Bakker, P. J., Rampanelli, E., Claessen, N., Teske, G. J. D., Butter, L., van Andel, H., van den Bergh Weerman, M. A., Larsen, P. W. B., Dessing, M. C., Zuurbier, C. J., Girardin, S. E., Florquin, S., Leemans, J. C. (2017). NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med, 214(8), 2405-2420. doi:10.1084/jem.20161031
Tanaka, T., Miyata, T., Inagi, R., Kurokawa, K., Adler, S., Fujita, T., Nangaku, M. (2003). Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways. Kidney Int, 64(6), 2020-2032. doi:10.1046/j.1523-1755.2003.00301.x
Tarpey, P. S., Smith, R., Pleasance, E., Whibley, A., Edkins, S., Hardy, C., O'Meara, S., Latimer, C., Dicks, E., Menzies, A., Stephens, P., Blow, M., Greenman, C., Xue, Y., Tyler-Smith, C., Thompson, D., Gray, K., Andrews, J., Barthorpe, S., Buck, G., Cole, J., Dunmore, R., Jones, D., Maddison, M., Mironenko, T., Turner, R., Turrell, K., Varian, J., West, S., Widaa, S., Wray, P., Teague, J., Butler, A., Jenkinson, A., Jia, M., Richardson, D., Shepherd, R., Wooster, R., Tejada, M. I., Martinez, F., Carvill, G., Goliath, R., de Brouwer, A. P., van Bokhoven, H., Van Esch, H., Chelly, J., Raynaud, M. ., Ropers, H. H., Abidi, F. E., Srivastava, A. K., Cox, J., Luo, Y., Mallya, U., Moon, J., Parnau, J., Mohammed, S., Tolmie, J. L., Shoubridge, C., Corbett, M., Gardner, A., Haan, E., Rujirabanjerd, S., Shaw, M., Vandeleur, L., Fullston, T., Easton, D. F., Boyle, J., Partington, M., Hackett, A., Field, M., Skinner, C., Stevenson, R. E., Bobrow, M., Turner, G., Schwartz, C. E., Gecz, J., Raymond, F. L., Futreal, P. A., Stratton, M. R. (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet, 41(5), 535-543. doi:10.1038/ng.367
Tattoli, I., Carneiro, L. A., Jehanno, M., Magalhaes, J. G., Shu, Y., Philpott, D. J., Arnoult, D., Girardin, S. E. (2008). NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep, 9(3), 293-300. doi:10.1038/sj.embor.7401161
Unger, B. L., Ganesan, S., Comstock, A. T., Faris, A. N., Hershenson, M. B., Sajjan, U. S. (2014). Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. J Virol, 88(7), 3705-3718. doi:10.1128/JVI.03039-13
Wallace, M. A. (1998). Anatomy and physiology of the kidney. AORN J, 68(5), 800, 803-816, 819-820; quiz 821-804. doi:10.1016/s0001-2092(06)62377-6
Wang, Y., Hao, N., Lin, H., Wang, T., Xie, J., Yuan, Y. (2018). Down-regulation of CASK in glucotoxicity-induced insulin dysfunction in pancreatic beta cells. Acta Biochim Biophys Sin (Shanghai), 50(3), 281-287. doi:10.1093/abbs/gmx139
Wenger, R. H., Stiehl, D. P., Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Sci STKE, 2005(306), re12. doi:10.1126/stke.3062005re12
Willam, C., Warnecke, C., Schefold, J. C., Kugler, J., Koehne, P., Frei, U., Wiesener, M., Eckardt, K. U. (2006). Inconsistent effects of acidosis on HIF-alpha protein and its target genes. Pflugers Arch, 451(4), 534-543. doi:10.1007/s00424-005-1486-3
Wu, J., Li, D. D., Li, J. Y., Yin, Y. C., Li, P. C., Qiu, L., Chen, L. M. (2019). Identification of microRNA-mRNA networks involved in cisplatin-induced renal tubular epithelial cells injury. Eur J Pharmacol, 851, 1-12. doi:10.1016/j.ejphar.2019.02.015
Xia, X., Cui, J., Wang, H. Y., Zhu, L., Matsueda, S., Wang, Q., Yang, X., Hong, J., Songyang, Z., Chen, Z. J., Wang, R. F. (2011). NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity, 34(6), 843-853. doi:10.1016/j.immuni.2011.02.022
Yang, Y., Yu, X., Zhang, Y., Ding, G., Zhu, C., Huang, S., Jia, Z., Zhang, A. (2018). Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin Sci (Lond), 132(7), 825-838. doi:10.1042/CS20171625
Zhang, H., Liu, B., Li, T., Zhu, Y., Luo, G., Jiang, Y., Tang, F., Jian, Z., Xiao, Y. (2018). AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med, 41(1), 69-76. doi:10.3892/ijmm.2017.3213
Zhang, W., Zhang, L., Chen, Y. X., Xie, Y. Y., Zou, Y. F., Zhang, M. J., Gao, Y. H., Liu, Y., Zhao, Q., Huang, Q. H., Chen, N. (2014). Identification of nestin as a urinary biomarker for acute kidney injury. Am J Nephrol, 39(2), 110-121. doi:10.1159/000358260
Zhang, Y., Yao, Y., Qiu, X., Wang, G., Hu, Z., Chen, S., Wu, Z., Yuan, N., Gao, H., Wang, J., Song, H., Girardin, S. E., Qian, Y. (2019). Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol, 20(4), 433-446. doi:10.1038/s41590-019-0324-2
Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett, 4(6), 1151-1157. doi:10.3892/ol.2012.928
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49476-
dc.description.abstract腎臟功能除了代謝廢物、排出多餘液體外,也與維持體液平衡有關。一旦腎臟血液停止供給,將會造成急性腎衰竭的發生。鈣/鈣調節蛋白依賴性絲胺酸激酶 (CASK) 是一種骨架蛋白且屬於 MAGUK 家族,在腦、骨髓及腎臟中皆有大量表現。先前的文獻提出 CASK 在腎臟的發育過程扮演關鍵性角色,但其在腎小管細胞的功能及與腎臟疾病關聯性仍然不清楚。在本篇研究中,我們探討腎小管細胞 CASK 在缺氧環境中所扮演的角色。我們發現在大鼠近曲小管上皮細胞株 (NRK-52E) 中 CASK 的蛋白表現在缺氧的條件下會上升,然而其信使核糖核酸表現量卻不受影響。此外,靜默 CASK 會抑制在缺氧條件下所誘導的血紅素氧化酶 (HO-1) 及缺氧誘導因子 (HIF-1) 蛋白表現。在 NRK-52E 細胞中,我們發現給予0.5% O2缺氧環境24小後並不會造成細胞死亡,而靜默 CASK 也不會影響細胞存活度。我們也發現在缺氧條件下靜默CASK 可以些微減緩細胞質中 ROS 的產生,但是會增加粒線體中 ROS 的含量; 至於粒線體膜電位及粒線體總量仍不受影響。值得注意的是,在正常氧濃度情況下,靜默 CASK 會降低粒線體的氧化磷酸化作用及糖解作用。NLRX1 已被報導參與調節粒線體功能,且可能與損傷疾病有關。在本研究中,我們觀察到 CASK 與 NLRX1 會共定位在細胞核中,且缺氧所誘導的NLRX1蛋白表現會受靜默 CASK所抑制。此外,我們藉由單邊或雙邊腎缺血再灌流手術,發現 CASK 無論是蛋白表現量或是基因表現量皆會在手術後受到抑制。然而在單側輸尿管阻塞誘發腎臟纖維化的疾病模式中,CASK 之基因表現量則有些上升。根據測定腎損傷標的為指標,我們發現 NLRX1 基因敲除小鼠並不會對急性腎臟疾病嚴重度產生影響,但對慢性腎臟病如腎臟纖維化的部分疾病指標則有抑制的作用。總而言之, CASK 參與腎小管細胞在正常氧環境下的代謝反應及在缺氧環境下的氧化自由基表現量的調控。對於CASK之分子作用機制、對腎臟生理及腎衰竭的病理角色仍須進一步探討。zh_TW
dc.description.abstractThe kidney plays an important function to remove the waste and excess fluid from our body and keep the right levels of electrolytes. If blood stops flowing into a kidney, can lead to acute kidney injury (AKI) and kidney failure. Calcium/calmodulin-dependent serine protein kinase (CASK), a scaffold protein, belongs to MAGUK family and is ubiquitously expressed with high expression in the brain, bone marrow and kidney. It is demonstrated that CASK plays a crucial role in kidney development, but how CASK exerts functions in renal tubular cells and involves in AKI are still unknown. Our research focused to study the role of CASK in renal tubule cells during hypoxia condition. We found in NRK-52E rat tubular epithelial cells, the protein expression of CASK is increased after hypoxic stimulation but its mRNA level is not changed. Moreover, silencing CASK can reduce hypoxia-induced HO-1 and HIF-1 protein but not gene expression. We also found that 0.5% O2 does not induce cell death in NRK-52E cells within 24 h and silencing CASK does not alter cell viability under hypoxia condition. We also demonstrated that silencing CASK slightly decreases the production of cytosolic ROS but increases the production of mitochondrial ROS under hypoxia condition without influencing the mitochondrial membrane potential nor mitochondrial mass. Of note, silencing CASK can reduce the mitochondrial respiration and glycolysis in NRK-52E cells under normoxia conditions. In addition, NOD-like receptor X1 (NLRX1) plays a role in the mitochondrial function and may involve in injury condition. In this study, we found that CASK can interact with NLRX1 in the nuclei and hypoxia-induced NLRX1 expression is inhibited by CASK silencing. Our data also revealed that the protein and/or mRNA levels of CASK are decreased in mice receiving unilateral or bilateral ischemia-reperfusion injury in kidney, while CASK mRNA is slightly increased in unilateral ureter obstruction (UUO) model. According to the injury marker, Nlrx1 knockout does not alter the progress of AKI but can reduce some disease markers of chronic kidney disease (CKD). In summary, our current findings suggest that CASK might regulate metabolism and redox status in renal tubule cells under normoxia and hypoxia conditions, respectively. The underlying molecular mechanisms are still unclear, and the pathophysiological role of CASK in AKI and CKD needs further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:30:30Z (GMT). No. of bitstreams: 1
U0001-1208202014184800.pdf: 4653230 bytes, checksum: ea96b5cf0abc18e8f0b31d7be96b54ba (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
口試委員會審定書 i
致謝 ii
Abbreviations iii
Abstract v
中文摘要 vii
Introduction 1
Pathogenesis and etiology of acute kidney injury 1
Novel biomarkers for AKI 3
Hypoxia in kidney injury 4
Calcium/calmodulin-dependent serine protein kinase (CASK) 6
The relationship between CASK and kidney 7
NOD-like receptor X1 (NLRX1) 8
The relationship between NLRX1 and kidney 10
Material and Methods 12
Antibodies and reagents 12
Cell culture 12
Hypoxia stimulation 13
Transfection and small interfering RNA (siRNA) 13
Infection and short hairpin RNA (shRNA) 13
Annexin V/propidium iodide (PI) staining 14
Measurement of cytosolic and mitochondrial ROS production 15
Measurement of mitochondrial oxygen consumption rate 15
Measurement of mitochondrial extracellular acidification rate 17
Immunoprecipitation 18
Immunoblotting 19
Reverse-transcription (RT) and real-time polymerase chain reaction (RT-PCR) 20
List of primer sequences 21
MTT assay 21
Animal and ethics statement 22
Ischemia/reperfusion induced acute kidney injury 22
Unilateral ureter obstruction induced chronic kidney disease 23
Renal histology and immunohistochemistry 23
Statistical analysis 24
Specific Aims 25
Results 26
CASK expression is increased after hypoxia stimulation in NRK-52E cells 26
CASK major localized in the nuclei is upregulated after hypoxia 26
Hypoxia-induced HO-1 and HIF-1 expression are inhibited by silencing CASK 27
CASK does not affect the viability of NRK-52E cells in normoxia and hypoxia 28
Hypoxia-induced ROS production is affected by silencing CASK 29
Silencing CASK does not alter mitochondrial membrane potential or mass after hypoxia stimulation 30
Silencing CASK inhibits mitochondrial respiration and glycolysis 30
Hypoxia-induced NLRX1 expression is inhibited by silencing CASK 31
CASK can interact with NLRX1 32
The role of NLRX1 in unilateral ischemia-reperfusion injury 32
The role of NLRX1 in bilateral ischemia-reperfusion injury 33
The role of NLRX1 in unilateral ureter obstruction 34
Discussion 36
The mechanism of CASK expression under hypoxia stimulation 36
How CASK regulates HIF-1HO-1 and NLRX1 protein expression 37
The role of CASK in cell death and cell growth 38
The relationship between CASK and mitochondrial function 39
The interaction between CASK and NLRX1 41
The possible functions of CASK and NLRX1 in kidney injury 41
Figures and Legends 44
Reference 63
dc.language.isoen
dc.subjectNLRX1zh_TW
dc.subjectCASKzh_TW
dc.subject腎小管細胞zh_TW
dc.subject缺氧zh_TW
dc.subject急性腎衰竭zh_TW
dc.subjectRenal tubular cellsen
dc.subjectAcute kidney injuryen
dc.subjectHypoxiaen
dc.subjectNLRX1en
dc.subjectCASKen
dc.title探討CASK在腎小管細胞缺氧及急性腎損傷之角色zh_TW
dc.titleThe roles of CASK in hypoxic renal tubular cells and acute kidney injuryen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝世良(Shie-Liang Hsieh),徐立中(Li-Chung Hsu),蔡丰喬(Feng-Chiao Tsai)
dc.subject.keywordCASK,腎小管細胞,缺氧,急性腎衰竭,NLRX1,zh_TW
dc.subject.keywordRenal tubular cells,Acute kidney injury,Hypoxia,CASK,NLRX1,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202003082
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
U0001-1208202014184800.pdf
  未授權公開取用
4.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved