Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠
dc.contributor.authorZih-Ting Huangen
dc.contributor.author黃子庭zh_TW
dc.date.accessioned2021-06-15T11:30:21Z-
dc.date.available2021-08-22
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation1. Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. Br Med Bull 2009;92:7-32.
2. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009;29:431-8.
3. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:2889-934.
4. Vaughan CJ, Gotto AM, Jr. Update on statins: 2003. Circulation 2004;110:886-92.
5. LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999;282:2340-6.
6. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001;292:1160-4.
7. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-30.
8. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89:331-40.
9. Evans M, Rees A. Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf 2002;25:649-63.
10. Pasternak RC, Smith SC, Jr., Bairey-Merz CN, et al. ACC/AHA/NHLBI Clinical Advisory on the Use and Safety of Statins. Circulation 2002;106:1024-8.
11. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376:1670-81.
12. Study of the Effectiveness of Additional Reductions in C, Homocysteine Collaborative G, Armitage J, et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet 2010;376:1658-69.
13. Bedi O, Dhawan V, Sharma PL, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol 2016;389:695-712.
14. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab 2015;19:554-62.
15. Mason JC. Statins and their role in vascular protection. Clin Sci (Lond) 2003;105:251-66.
16. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 2005;45:89-118.
17. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006;112:71-105.
18. Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Expert Opin Drug Saf 2011;10:373-87.
19. Fruchart JC, Brewer HB, Jr., Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998;81:912-7.
20. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98:2088-93.
21. Kamanna VS, Kashyap ML. Mechanism of action of niacin on lipoprotein metabolism. Curr Atheroscler Rep 2000;2:36-46.
22. Rosenson RS. Current overview of statin-induced myopathy. Am J Med 2004;116:408-16.
23. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA 1990;264:71-5.
24. Glueck CJ, Oakes N, Speirs J, Tracy T, Lang J. Gemfibrozil-lovastatin therapy for primary hyperlipoproteinemias. Am J Cardiol 1992;70:1-9.
25. Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998;81:368-9.
26. Reaven P, Witztum JL. Lovastatin, nicotinic acid, and rhabdomyolysis. Ann Intern Med 1988;109:597-8.
27. Wen X, Wang JS, Backman JT, Kivisto KT, Neuvonen PJ. Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9. Drug Metab Dispos 2001;29:1359-61.
28. Sudhop T, Lutjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2002;106:1943-8.
29. Dujovne CA, Ettinger MP, McNeer JF, et al. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol 2002;90:1092-7.
30. Knopp RH, Gitter H, Truitt T, et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 2003;24:729-41.
31. Melani L, Mills R, Hassman D, et al. Efficacy and safety of ezetimibe coadministered with pravastatin in patients with primary hypercholesterolemia: a prospective, randomized, double-blind trial. Eur Heart J 2003;24:717-28.
32. Shepherd J, Packard CJ, Morgan HG, Third JL, Stewart JM, Lawrie TD. The effects of cholestyramine on high density lipoprotein metabolism. Atherosclerosis 1979;33:433-44.
33. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 2012;59:2344-53.
34. Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 2012;308:2497-506.
35. Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 2012;380:29-36.
36. Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2012;380:1995-2006.
37. Koren MJ, Lundqvist P, Bolognese M, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 2014;63:2531-40.
38. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 2015;385:331-40.
39. Navarese EP, Kolodziejczak M, Schulze V, et al. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 Antibodies in Adults With Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann Intern Med 2015;163:40-51.
40. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372:1500-9.
41. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372:1489-99.
42. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003;289:1681-90.
43. Antons KA, Williams CD, Baker SK, Phillips PS. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med 2006;119:400-9.
44. Staffa JA, Chang J, Green L. Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 2002;346:539-40.
45. Sakaeda T, Kadoyama K, Okuno Y. Statin-associated muscular and renal adverse events: data mining of the public version of the FDA adverse event reporting system. PLoS One 2011;6:e28124.
46. Norata GD, Tibolla G, Catapano AL. Statins and skeletal muscles toxicity: from clinical trials to everyday practice. Pharmacol Res 2014;88:107-13.
47. Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother 2002;36:288-95.
48. Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 2004;292:2585-90.
49. Mosshammer D, Schaeffeler E, Schwab M, Morike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol 2014;78:454-66.
50. Bagley WH, Yang H, Shah KH. Rhabdomyolysis. Intern Emerg Med 2007;2:210-8.
51. Alfirevic A, Neely D, Armitage J, et al. Phenotype standardization for statin-induced myotoxicity. Clin Pharmacol Ther 2014;96:470-6.
52. Stroes ES, Thompson PD, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J 2015;36:1012-22.
53. Pirillo A, Catapano AL. Statin intolerance: diagnosis and remedies. Curr Cardiol Rep 2015;17:27.
54. Martin PD, Mitchell PD, Schneck DW. Pharmacodynamic effects and pharmacokinetics of a new HMG-CoA reductase inhibitor, rosuvastatin, after morning or evening administration in healthy volunteers. Br J Clin Pharmacol 2002;54:472-7.
55. Lee E, Ryan S, Birmingham B, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005;78:330-41.
56. Hopewell JC, Offer A, Parish S, et al. Environmental and genetic risk factors for myopathy in Chinese participants from HPS2-THRIVE. European Heart Journal 2012;33:445-.
57. Liao JK. Safety and efficacy of statins in Asians. Am J Cardiol 2007;99:410-4.
58. Prisant LM, Downton M, Watkins LO, et al. Efficacy and tolerability of lovastatin in 459 African-Americans with hypercholesterolemia. Am J Cardiol 1996;78:420-4.
59. Jacobson TA, Chin MM, Curry CL, et al. Efficacy and safety of pravastatin in African Americans with primary hypercholesterolemia. Arch Intern Med 1995;155:1900-6.
60. Taha DA, De Moor CH, Barrett DA, Gershkovich P. Translational insight into statin-induced muscle toxicity: from cell culture to clinical studies. Transl Res 2014;164:85-109.
61. Grable-Esposito P, Katzberg HD, Greenberg SA, Srinivasan J, Katz J, Amato AA. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve 2010;41:185-90.
62. Mammen AL, Amato AA. Statin myopathy: a review of recent progress. Curr Opin Rheumatol 2010;22:644-50.
63. Needham M, Fabian V, Knezevic W, Panegyres P, Zilko P, Mastaglia FL. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul Disord 2007;17:194-200.
64. Gryn SE, Hegele RA. Pharmacogenomics, lipid disorders, and treatment options. Clin Pharmacol Ther 2014;96:36-47.
65. Ramsey LB, Johnson SG, Caudle KE, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 2014;96:423-8.
66. Vaklavas C, Chatzizisis YS, Ziakas A, Zamboulis C, Giannoglou GD. Molecular basis of statin-associated myopathy. Atherosclerosis 2009;202:18-28.
67. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 2001;21:1712-9.
68. Osaki Y, Nakagawa Y, Miyahara S, et al. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy. Biochem Biophys Res Commun 2015;466:536-40.
69. Flint OP, Masters BA, Gregg RE, Durham SK. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol Appl Pharmacol 1997;145:91-8.
70. Howe K, Sanat F, Thumser AE, Coleman T, Plant N. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes. Xenobiotica 2011;41:519-29.
71. Westwood FR, Scott RC, Marsden AM, Bigley A, Randall K. Rosuvastatin: characterization of induced myopathy in the rat. Toxicol Pathol 2008;36:345-52.
72. Johnson TE, Zhang X, Bleicher KB, et al. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol 2004;200:237-50.
73. Mullen PJ, Luscher B, Scharnagl H, Krahenbuhl S, Brecht K. Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem Pharmacol 2010;79:1200-9.
74. Nishimoto T, Ishikawa E, Anayama H, et al. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs. Toxicol Appl Pharmacol 2007;223:39-45.
75. Nishimoto T, Tozawa R, Amano Y, Wada T, Imura Y, Sugiyama Y. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in human myocytes. Biochem Pharmacol 2003;66:2133-9.
76. Muntoni F, Brockington M, Torelli S, Brown SC. Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol 2004;17:205-9.
77. Matzno S, Yasuda S, Juman S, et al. Statin-induced apoptosis linked with membrane farnesylated Ras small G protein depletion, rather than geranylated Rho protein. J Pharm Pharmacol 2005;57:1475-84.
78. Blanco-Colio LM, Villa A, Ortego M, et al. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis 2002;161:17-26.
79. Sakamoto K, Kimura J. Mechanism of statin-induced rhabdomyolysis. J Pharmacol Sci 2013;123:289-94.
80. Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 2008;14:37-44.
81. Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H. Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J 2009;73:361-70.
82. Medina MW, Theusch E, Naidoo D, et al. RHOA is a modulator of the cholesterol-lowering effects of statin. PLoS Genet 2012;8:e1003058.
83. Copaja M, Venegas D, Aranguiz P, et al. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts. Toxicol Appl Pharmacol 2011;255:57-64.
84. Itagaki M, Takaguri A, Kano S, Kaneta S, Ichihara K, Satoh K. Possible mechanisms underlying statin-induced skeletal muscle toxicity in L6 fibroblasts and in rats. J Pharmacol Sci 2009;109:94-101.
85. Sakamoto K, Honda T, Yokoya S, Waguri S, Kimura J. Rab-small GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers. FASEB J 2007;21:4087-94.
86. Sakamoto K, Wada I, Kimura J. Inhibition of Rab1 GTPase and endoplasmic reticulum-to-Golgi trafficking underlies statin's toxicity in rat skeletal myofibers. J Pharmacol Exp Ther 2011;338:62-9.
87. Ostrowski SM, Wilkinson BL, Golde TE, Landreth G. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem 2007;282:26832-44.
88. Gee RH, Spinks JN, Malia JM, Johnston JD, Plant NJ, Plant KE. Inhibition of prenyltransferase activity by statins in both liver and muscle cell lines is not causative of cytotoxicity. Toxicology 2015;329:40-8.
89. Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009;10:241-51.
90. Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics 1991;9:629-41.
91. Ruano G, Windemuth A, Wu AH, et al. Mechanisms of statin-induced myalgia assessed by physiogenomic associations. Atherosclerosis 2011;218:451-6.
92. Needham M, Mastaglia FL. Statin myotoxicity: a review of genetic susceptibility factors. Neuromuscul Disord 2014;24:4-15.
93. Draeger A, Sanchez-Freire V, Monastyrskaya K, et al. Statin therapy and the expression of genes that regulate calcium homeostasis and membrane repair in skeletal muscle. Am J Pathol 2010;177:291-9.
94. Davies PA, Pistis M, Hanna MC, et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 1999;397:359-63.
95. Ruano G, Thompson PD, Windemuth A, et al. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007;36:329-35.
96. Zalk R, Clarke OB, des Georges A, et al. Structure of a mammalian ryanodine receptor. Nature 2015;517:44-9.
97. Efremov RG, Leitner A, Aebersold R, Raunser S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 2015;517:39-43.
98. Zucchi R, Ronca-Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 1997;49:1-51.
99. Vladutiu GD, Isackson PJ, Kaufman K, et al. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol Genet Metab 2011;104:167-73.
100. Marciante KD, Durda JP, Heckbert SR, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics 2011;21:280-8.
101. Hubacek JA, Adamkova V, Hruba P, Ceska R, Vrablik M. Association between polymorphism within the RYR2 receptor and development of statin-associated myalgia/myopathy in the Czech population. Eur J Intern Med 2015;26:367-8.
102. Mohaupt MG, Karas RH, Babiychuk EB, et al. Association between statin-associated myopathy and skeletal muscle damage. CMAJ 2009;181:E11-8.
103. Mangravite LM, Engelhardt BE, Medina MW, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 2013;502:377-80.
104. Luzum JA, Kitzmiller JP, Isackson PJ, et al. GATM polymorphism associated with the risk for statin-induced myopathy does not replicate in case-control analysis of 715 dyslipidemic individuals. Cell Metab 2015;21:622-7.
105. Ballard KD, Thompson PD. Does reduced creatine synthesis protect against statin myopathy? Cell Metab 2013;18:773-4.
106. Carr DF, Alfirevic A, Johnson R, Chinoy H, van Staa T, Pirmohamed M. GATM gene variants and statin myopathy risk. Nature 2014;513:E1.
107. Ross P, Hall L, Smirnov I, Haff L. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 1998;16:1347-51.
108. Storm N, Darnhofer-Patel B, van den Boom D, Rodi CP. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol Biol 2003;212:241-62.
109. Armitage J. The safety of statins in clinical practice. Lancet 2007;370:1781-90.
110. Gluba-Brzozka A, Franczyk B, Toth PP, Rysz J, Banach M. Molecular mechanisms of statin intolerance. Arch Med Sci 2016;12:645-58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49473-
dc.description.abstract研究背景
心血管疾病(Cardiovascular disease, CVD)為全球十大死因之一,降脂藥物(Lipid-lowering drugs)除了良好的降血脂功能,同時具多效作用(pleiotropic effect),減緩血管粥狀硬化,降低心血管事件發生率,因而被全球廣泛使用。降脂藥物引發的肌肉病變雖然發生機率低,卻是危險性相當高的藥物不良反應。截至目前,僅對於帶有SLCO1B1 rs4149056T>C變異會增加史達汀血中濃度與肌肉性不良反應(myopathy)的風險達到共識,CPIC (The Clinical Pharmacogenetics Implementation Consortium)對此於2014年提出治療建議總結,其他可能致病基因則沒有顯著的相關性。然而從降脂藥物的作用機制來思考,肌肉毒性可能和mevalonate pathway受到抑制有直接關係。Isoprenoids負責蛋白質的轉譯後修飾(prenylation),經修飾後的蛋白質(prenylated protein)又稱小GTP結合蛋白(small GTPases protein),在細胞中擔任重要角色,負責調控細胞死亡與訊息傳遞。Isoprenoids pathway上GGPP、FPP、GGTase I、GGTase II、Rab、Ras/Rap對降脂藥物引發肌肉毒性的可能性,值得進一步探討。
研究方法
本研究回溯性納入17位國際診斷碼ICD-9-CM: 728.88-728.89為發病組;另回溯性及前瞻性收集74位使用Atorvastatin或Rosuvastatin大於四週並未有肌肉性藥物不良反應者為控制組。利用iPLEX SNP Genotyping鑑定94位受試者18個基因:GGPS1、RABGGTA、RABGGTB、RAB1A、RAB1B、RAB2A、RAB6A、RAB7A、RAB33B、RAP1A、GATM、RYR2、ATP2B1、DMPK、HTR3B、HTR7、SLCO1B1、COQ1,共57個SNP。統計分析基因多型性與降脂藥物引發肌肉毒性之相關性。
 
研究結果
本研究除了rs16832568 (GGPS1)、rs2930041 (RAB2A)、rs1880643 (RAB6A)鑑定失敗外,其餘皆可鑑定出基因型,鑑定結果有8個SNPs頻率集中於同一基因型。發病組與控制組平均年齡分別為59.9歲、60.0歲。發病組中女性佔的比例比男性高(女性:58.8%,男性:41.2%)。發病組17人平均發病時間為8.4個月,其中4人(23.5%)合併用藥,進一步分析單一/合併用藥與發病年齡、發病時間、檢驗生化值,皆無顯著關係(p > 0.05)。94位研究案例,在0.05顯著水準下,9個單一SNP與疾病發生具有相關性:RAB2A: rs2875968、rs2326562、rs2875967、rs2981277、rs41420549、rs2930040、rs671275;RAP1A rs565522;COQ1 rs10829053。將這9個單一SNP與發病時間、檢驗生化值進一步做相關性分析,在0.05顯著水準下,COQ1 rs10829053的AA基因型發病時間會比AG基因型高出10.27(月)。RAB2A SNP rs16926265(T>C)與RAB2A rs41420549(A>T)組成的單套型T-A與疾病發生有相關性(p -value =0.0302)。
結論
本研究發現某些基因型與受試者疾病發生具有相關性,顯示先天遺傳在降脂藥物引發肌肉毒性方面有其重要性。以往多著重於藥物動力學與藥效學可能致病基因上作探討,本研究可提供不同面向:Isoprenoids pathway上高血脂病患在肌肉毒性之預防上作為參考。結果是否可於更大的台灣人族群中得到驗證,需未來更多進一步之研究。
zh_TW
dc.description.abstractIntroduction
Cardiovascular disease (CVD) is one of the major causes of death globally. Hypercholesterolemia with elevated low-density lipoprotein cholesterol (LDL-C) is one of the major risk factor of CVD and stroke. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor also known as statins are the most widely used drugs for hypercholesterolemia. Statins successfully lower plasma LDL-C concentrations, reduce CVD risk and also improve health status in people with CVD. Unfortunately, rare but severe muscle toxicity such as rhabdomyolysis can be fatal by usage of statins or fibrates. The incidence of muscle toxicity is relatively uncertain, ranging from 1.5% to 5% in randomized controlled trials. There are many studies regarding the effects of polymorphic genes on muscle toxicity. However, only the variants in SLCO1B1 is the consensus. The mechanism that underlies statin toxicity is likely to be related to be a direct consequence of the inhibition of mevalonate pathway since mevalonate supplementation prevents toxicity in vitro and in vivo. Statin-induced muscle cell damage is consequently suppressed by depleting GGPP and FPP, which reduce prenylated proteins and intracellular vesicle traffic. Normal cell growth and differentiation may be altered by statins through the control of the cell cycle and entry into apoptosis. However, there are limited data in humans. Therefore, the thesis is aimed to study the risk factors which are possibly involved in severe adverse drug reactions and their genotype-phenotype relations.
Methods
The research subjects are in two groups: myopathy group and control group. Subjects in myopathy group was retrospectively collected in National Taiwan University Hospital from August 1997 to August 2007 with records of rhabdomyolysis upon lipid-lowering drugs monotherapy or combined therapy. Subjects treated with ATV 10 mg/day or RSV 10 mg/day with no diagnosis of myopathy were designated as control group, which were retrospectively or prospectively collected in National Taiwan University Hospital from January 2006 to December 2006. The DNA of 94 individuals were extracted for detection of 57 SNPs in the genes related to muscle toxicity. They includes GGPS1、RABGGTA、RABGGTB、RAB1A、RAB1B、RAB2A、RAB6A、RAB7A、RAB33B、RAP1A、GATM、RYR2、ATP2B1、DMPK、HTR3B、HTR7、SLCO1B1 and COQ1. Analysis was focused on the association between the incidence of muscle toxicity and genetic variations in patients receiving statins or fibrates.
Results
There were 94 patients in total enrolled in this study. Amon them, 17 patients were enrolled as the myopathy group and 74 patients were as the control group. Monotherapy or combined therapy are not associated with patients suffering from rhabdomyolysis. Nine SNPs (RAB2A: rs2875968、rs2326562、rs2875967、rs2981277、rs41420549、rs2930040、rs671275;RAP1A rs565522;COQ1 rs10829053) are correlated with the incidence of rhabdomyolysis (p < 0.05), in specific genetic models. In haplotype analysis, incidence of toxicity was shown in the individuals with haplotype T-A (frequency: 55.5%) of RAB2A. Individuals with AG genotype of COQ1 res10829053 showed faster onset compared to AA genotype (p < 0.05).
Conclusion
Results demonstrate the risk factors of myotoxicity in use of statins or fibrates in NTUH patients. Statins-induced depletion of isoprenoids and inactivation of small GTPases such as Rab may be involved in lipid lowering drugs-related myotoxicity. Further study is needed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:30:21Z (GMT). No. of bitstreams: 1
ntu-105-R02423011-1.pdf: 2164931 bytes, checksum: 2d64e48a883e0ee30fc2cf1c8b6b9732 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目 錄 vi
圖目錄 viii
表目錄 ix
縮寫對照表 x
第一章 緒論 1
第一節 文獻回顧與探討 1
1.1 史達汀 1
1.2 非史達汀類降脂藥物 2
第二節 肌肉性不良反應 4
2.1. 概述 4
2.2. 致病機轉 6
2.3. 藥物基因體學 8
第三節 研究動機與研究問題 11
第二章 研究方法 12
第一節 研究族群 12
第二節 研究設計 12
第三節 血液檢體處理 13
第四節 單核苷酸多型性(SNP)基因型鑑定-iPLEX SNP Genotyping 14
第五節 統計分析 15
第三章 研究結果 16
第一節 受試者基本資料 16
第二節 受試者生化值分析 16
第三節 受試者基因多型性分析 17
3.1 基因型分布 17
3.2 哈溫定律 (Hardy-Weinberg Equilibrium) 18
3.3 單一SNP與疾病發生的相關性 18
3.4 單套型研究 19
第四章 討論 20
第五章 研究限制 24
第六章 參考文獻 54
dc.language.isozh-TW
dc.subject基因多型性zh_TW
dc.subject史達汀zh_TW
dc.subject纖維衍生物zh_TW
dc.subject橫紋肌溶解zh_TW
dc.subject甲羥戊酸zh_TW
dc.subject小GTP結合蛋白zh_TW
dc.subject單核?酸多型性zh_TW
dc.subjectfibratesen
dc.subjectisoprenoidsen
dc.subjectmevalonateen
dc.subjectrhabdomyolysisen
dc.subjectstatinsen
dc.subjectmyopathyen
dc.subjectgenetic polymorphismen
dc.subjectsingle nucleotide polymorphism (SNP)en
dc.subjectsmall GTPase proteinsen
dc.title降血脂藥引發肌肉性不良反應與基因多型性之研究zh_TW
dc.titleLipid lowering drugs-induced muscle toxicity and related genetic factorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee程蘊菁,林芳如,王宗道
dc.subject.keyword史達汀,纖維衍生物,橫紋肌溶解,甲羥戊酸,小GTP結合蛋白,單核?酸多型性,基因多型性,zh_TW
dc.subject.keywordstatins,fibrates,myopathy,rhabdomyolysis,mevalonate,isoprenoids,small GTPase proteins,single nucleotide polymorphism (SNP),genetic polymorphism,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201603107
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved