Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭典翰(Dian-Han Kuo)
dc.contributor.authorMin-Shiang Fanen
dc.contributor.author范閔翔zh_TW
dc.date.accessioned2021-06-15T11:30:06Z-
dc.date.available2016-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation1. Njus, D., L. McMurry, and J. W. Hastings. 1977. Conditionality of circadian rhythmicity: Synergistic action of light and temperature. J. Comp. Physiol. 117: 335-344.
2. Hoffmann, K. (1971). Biological clocks in animal orientation and in other functions. In: Proceedings of the International Symposium on Circadian Rhythmicity, pp. 175-205. North Holland Publishing Co., Wageningen, Netherlands.
3. Bunning, E. (1960). Opening address: Biological clocks. Cold Spring Harb. Symp. Quant. Biol. 25: 1-9.
4. Dunlap, J. C. (1999). Molecular bases for circadian clocks. Cell 96: 271-290.
5. Preitner, N., F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, et al. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
6. Reppert, S. M., and D. R. Weaver. (2002). Coordination of circadian timing in mammals. Nature 418: 935-941.
7. Zantke, J., et al. (2013). Circadian and circalunar clock interactions in a marine annelid. Cell Rep 5(1): 99-113.
8. Millar, A. J., M. Straume, J. Chory, N-H. Chua, and S. A. Kay. (1995). The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267: 1163-1166.
9. Dunlap, J. C. (1993). Genetic analysis of circadian clocks. Annu. Rev. Physiol. 55: 683-728.
10. Edmunds, L.N., (1988). Cellular and Molecular Bases of Biological Clocks. Springer, New York.
11. Konopka, R. J., and S. Benzer. 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2112-2116.
12. Sehgal, A., Price, J.L., Man, B., and Young, M.W. (1994). Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606.
13. Bruce, V.G. (1972). Mutants of the biological clock in Chlamydomohsnas reinhardi. Genetics 70, 537–548.
14. Feldman, J.F., and Hoyle, M.N. (1973). Isolation of circadian clock mutants in Neurospora crassa. Genetics 75, 605–613.
15. Kondo, T., Tsinoremas, N.F., Golden, S.S., Johnson, C.H., Kutsuna, S., and Ishiura, M. (1994). Circadian clock mutants of Cyanobacteria. Science 266, 1233–1236.
16. Millar, A.J., Carre, I.A., Strayer, C.A., Chua, N.-H., and Kay, S.A. (1995). Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.
17. Ralph, M.R., and Menaker, M. (1988). A mutation of the circadian system in golden hamsters. Science 241, 1225–1227.
18. Vitaterna, M.R., King, D.P., Chang, A.-M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W., and Takahashi, J.S. (1994). Mutagenesisand mapping of a mouse gene, clock, essential for circadian behavior. Science 264, 719–725.
19. Reppert, S.M., and Sauman, I. (1995). period and timeless tango: a dance of two clock genes. Neuron 15, 983–986.
20. Vosshall, L.B., Price, J.L., Sehgal, A., Saez, L., and Young, M.W. (1994). Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606–1609.
21. Bargiello, T.A., and Young, M.W. (1984). Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81, 2142–2146.
22. Reddy, P., Zehring, W.A., Wheeler, D.A., Pirrota, V., Hadfield, C., Hall, J.C., and Rosbash, M. (1984). Molecular analysis of the period locus of Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701–710.
23. Myers, M.P., Wager-Smith, K., Wesley, C.S., Young, M.W., and Sehgal, A. (1995). Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270, 805–808.
24. Hardin, P.E., Hall, J.C., and Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540.
25. Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M.P., and Young, M.W. (1995). Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270, 808–810.
26. Gekakis, N., Saez, L., Delahaye-Brown, A.-M., Myers, M.P., Sehgal, A., Young,M.W., and Weitz,C.J. (1995). Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270, 811–815.
27. Lee, C., Parikh, V., Itsukaichi, T., Bae, K., and Edery, I. (1996). Resetting the Drosophila clock by photic regulation of PER and a PER–TIM complex. Science 271, 1740–1744.
28. Young, M.W., Wager-Smith, K., Vosshall, L., Saez, L., and Myers, M.P. (1996). Molecular anatomy of a light-sensitive circadian pacemaker in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 61, in press.
29. Zeng, H., Qian, Z., Myers, M.P., and Rosbash, M. (1996). A lightentrainment mechanism for the Drosophila circadian clock. Nature 380, 129–135.
30. Hunter-Ensor, M., Ousley, A., and Sehgal, A. (1996). Regulation of the Drosophila protein Timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685.
31. Myers, M.P., Wager-Smith, K., Rothenfluh-Hilfiker, A., and Young, M.W. (1996). Light-induced degradation of TIMELESS and entraiment of the Drosophila circadian clock. Science 271, 1736–1740.
32. Siwicki, K.K., Eastman, C., Petersen, G., Rosbash, M., and Hall, J.C (1988). Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1, 141–150.
33. Saez, L., and Young, M.W. (1988). In situ localization of the per clock protein during development of Drosophila melanogaster. Mol. Cell. Biol. 8, 5378–5385.
34. Liu, X., Zweibel, L.J., Hinton, D., Benzer, S., Hall, J.C., and Rosbash, M. (1992). The period gene encodes a predominately nuclear protein in adult Drosophila. J. Neurosci. 12, 2735–2744.
35. Curtin, K., Huang, Z.J., and Rosbash, M. (1995). Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14, 365–372.
36. Kay, S.A., andMillar, A.J. (1995). New models in vogue for circadian clocks. Cell 83, 361–364.
37. Zantke, J., et al. (2013). Circadian and circalunar clock interactions in a marine annelid. Cell Rep 5(1): 99-113.
38. Price, J.L., Dembinska, M.E., Young, M.W., and Rosbash, M. (1995). Suppression of period protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J. 14, 4044–4049.
39. Zeng, H., Hardin, P.E., and Rosbash, M. (1994). Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J. 13, 3590–3598.
40. Zantke, J., et al. (2013). Circadian and circalunar clock interactions in a marine annelid. Cell Rep 5(1): 99-113.
41. Pittendrigh, C. S. 1954. On temperature independent in the clock system controlling emergence time in Drosophila. Proc. Natl. Acad. Sci. USA 40:1018-1029.
42. Young, M.1998. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67: 135-152.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49468-
dc.description.abstract大部分的生物都存在有生理時鐘,但是不同種類的生物生理時鐘週期會有明顯的差異。本文的實驗動物是水蛭(Helobdella robusta)欲用來探討生理時鐘的行為模式與基因表現。水蛭是一種冠輪動物(Lophotrochozoans),屬於三類主要兩側對稱動物的一支。本研究著重在水蛭的外部行為觀察與內部生理時鐘相關基因Timeless homolog表現的探討。在外部行為觀察方面,發現水蛭在夜晚的活動比在白天的活動來的頻繁,所以推定水蛭有生理時鐘的存在。在內部基因表現方面,我發現水蛭的Timeless homolog基因表現量隨著時間改變,晚上的表現量較白天要高。至於這些基因之間彼此是如何來調控生理時鐘的變化則還不清楚,詳細機制探討需要未來更多的研究和數據來驗證。zh_TW
dc.description.abstractMost of life forms have circadian clocks, but the details with respect to the mechanisms and the extents of influence vary between species. In this study, I studied the circadian rhythm in the behavior and gene expression of the leeches, Helobdella robusta. The leeches belong to Lophotrochozoa, one of the three major groups of bilaterally symmetric animals. This study focuses on behavioral observation first and also documents the temporal expression profile of a ‘circadian clock’ gene – Timeless homolog – in leech. In the behavior observation section, I found that the leeches are more active and having more walking distance during the night than during the day. In the summary, I found that the leeches have the circadian clock in the body. In the gene expression study, I found that the expression level of Timeless homolog is more during the night than during the day. However, the roles of Timeless homolog and other candidate genes in regulation of circadian behavior of the leeches are still unknown. More researches are needed for understanding the molecular and neural mechanism underlying the circadian behavior rhythm in the leech.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:30:06Z (GMT). No. of bitstreams: 1
ntu-105-R01B41038-1.pdf: 2295153 bytes, checksum: 57f270f8ac157c8890a723583923a9d8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書...........................................I
致謝...................................................II
中文摘要...............................................III
Abstract...............................................IV
Content.................................................V
Figure content.......................................VIII
Chapter 1. Introduction.................................1
1.1 Conventional knowledge to circadian clock pathway.................................................1
1.2 Conventional knowledge to circadian pacemaker systems.................................................4
1.3 The leech, Helobdella robusta, and the evolution of circadian clock in the animal kingdom.................................................8
1.4 The role of the timeless (tim) gene in circadian clock pathway..........................................10
1.5 Specific objective............................14
Chapter 2. Material and Methods........................15
2.1 The leech breeding and selection..............15
2.2 Total RNA isolation and retro-transcription for cDNA making............................................16
2.3 Quantity PCR analysis for Timeless............17
2.4 Molecular cloning of Timeless...............................................18
2.5 Phylogenetic tree analysis of Timeless........19
2.6 Behavioral recording of Leech.................20
2.7 Analysis of circadian rhythm in the leech behavior...............................................21
2.8 Statistics and normalization..................22
Chapter 3. Results.....................................23
3.1 The behavior of the leeches in the cycle of 12 hours of darkness and 12 hours of light................23
3.2 The behavior of the leeches in the cycle of 12 hours dark and 12 hours light with no food.............24
3.3 Behavior of the leeches in constant darkness..25
3.4 The behavior of the leeches under phase-shifted light-dark cycles......................................26
3.5 Timeless gene from the leech..................27
3.6 The expression of Leech Timeless under the cycle of 12 hours of darkness and 12 hours of light..........29
Chapter 4. Discussions.................................30
4.1 Significance of the work......................34
Figures................................................35
References.............................................55
dc.language.isoen
dc.subject生理時鐘zh_TW
dc.subject水蛭zh_TW
dc.subject冠輪動物zh_TW
dc.subjectLophotrochozoaen
dc.subjectHelobdella robustaen
dc.subjectCircadian clocken
dc.title由行為與Timeless基因來探討水蛭的生理時鐘zh_TW
dc.titleCircadian Rhythm of Helobdella robusta: a Study on daily activity and timeless geneen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳示國(Shih-Kuo Chen)
dc.contributor.oralexamcommittee陳俊宏(Jiun-Hong Chen)
dc.subject.keyword生理時鐘,水蛭,冠輪動物,zh_TW
dc.subject.keywordCircadian clock,Helobdella robusta,Lophotrochozoa,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201602592
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved