Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49443
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王錦堂(Jin-Town Wang)
dc.contributor.authorHui-En Keen
dc.contributor.author柯惠恩zh_TW
dc.date.accessioned2021-06-15T11:28:56Z-
dc.date.available2023-09-01
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. Berg, R.D., The indigenous gastrointestinal microflora. Trends Microbiol, 1996. 4(11): p. 430-5.
2. Turnbaugh, P.J., et al., The human microbiome project. Nature, 2007. 449(7164): p. 804-10.
3. Xu, J. and J.I. Gordon, Honor thy symbionts. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10452-9.
4. Willing, B.P., S.L. Russell, and B.B. Finlay, Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 2011. 9(4): p. 233-43.
5. Chang, J.Y., et al., Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis, 2008. 197(3): p. 435-8.
6. Sommer, F. and F. Bäckhed, The gut microbiota--masters of host development and physiology. Nat Rev Microbiol, 2013. 11(4): p. 227-38.
7. Frank, D.N., et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13780-5.
8. Kostic, A.D., et al., Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013. 14(2): p. 207-15.
9. Jiang, H., et al., Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun, 2015. 48: p. 186-94.
10. Wang, Z., et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011. 472(7341): p. 57-63.
11. Koeth, R.A., et al., Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med, 2013. 19(5): p. 576-85.
12. Tang, W.H. and S.L. Hazen, The contributory role of gut microbiota in cardiovascular disease. J Clin Invest, 2014. 124(10): p. 4204-11.
13. Finegold, J.A., P. Asaria, and D.P. Francis, Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol, 2013. 168(2): p. 934-45.
14. Wong, N.D., Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol, 2014. 11(5): p. 276-89.
15. Ritchie, H. Causes of Death. Our World in Data 2018; Available from: https://ourworldindata.org/causes-of-death.
16. Go, A.S., et al., Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation, 2014. 129(3): p. e28-e292.
17. Nichols, M., et al., Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J, 2014. 35(42): p. 2950-9.
18. Nabel, E.G., Cardiovascular disease. N Engl J Med, 2003. 349(1): p. 60-72.
19. Cheng, Y., et al., Secular trends in coronary heart disease mortality, hospitalization rates, and major cardiovascular risk factors in Taiwan, 1971-2001. Int J Cardiol, 2005. 100(1): p. 47-52.
20. Smith, S.C., Jr., et al., AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation, 2011. 124(22): p. 2458-73.
21. Zeisel, S.H., et al., Concentrations of choline-containing compounds and betaine in common foods. J Nutr, 2003. 133(5): p. 1302-7.
22. al-Waiz, M., et al., The exogenous origin of trimethylamine in the mouse. Metabolism, 1992. 41(2): p. 135-6.
23. Bennett, B.J., et al., Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab, 2013. 17(1): p. 49-60.
24. Brown, J.M. and S.L. Hazen, Microbial modulation of cardiovascular disease. Nat Rev Microbiol, 2018. 16(3): p. 171-181.
25. Koeth, R.A., et al., gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab, 2014. 20(5): p. 799-812.
26. Craciun, S. and E.P. Balskus, Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A, 2012. 109(52): p. 21307-12.
27. Kalnins, G., et al., Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae. J Biol Chem, 2015. 290(35): p. 21732-40.
28. Lamark, T., et al., DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol, 1991. 5(5): p. 1049-64.
29. Seim, H., et al., Splitting of the C-N bond in carnitine by an enzyme (trimethylamine forming) from membranes of Acinetobacter calcoaceticus. FEMS Microbiology Letters, 1982. 15(3): p. 165-167.
30. Zhu, Y., et al., Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A, 2014. 111(11): p. 4268-73.
31. Unemoto, T., et al., Formation of trimethylamine from DL-carnitine by Serratia marcescens. Biochim Biophys Acta, 1966. 121(1): p. 220-2.
32. Rath, S., et al., Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 2017. 5(1): p. 54.
33. Koeth, R.A., et al., l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest, 2019. 129(1): p. 373-387.
34. Wu, W.K., et al., Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut, 2019. 68(8): p. 1439-1449.
35. Robert, C., et al., Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol, 2007. 57(Pt 7): p. 1516-20.
36. Gustafsson, R.J., et al., Mucosa-associated bacteria in two middle-aged women diagnosed with collagenous colitis. World J Gastroenterol, 2012. 18(14): p. 1628-34.
37. Ndongo, S., et al., 'Ihubacter massiliensis': a new bacterium isolated from the human gut. New Microbes New Infect, 2016. 13: p. 104-5.
38. Rapp, B.J. and J.D. Wall, Genetic transfer in Desulfovibrio desulfuricans. Proc Natl Acad Sci U S A, 1987. 84(24): p. 9128-30.
39. Smith, C.J., M.B. Rogers, and M.L. McKee, Heterologous gene expression in Bacteroides fragilis. Plasmid, 1992. 27(2): p. 141-54.
40. Groh, J.L., et al., A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl Environ Microbiol, 2005. 71(11): p. 7064-74.
41. Choi, V.M., et al., Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med, 2016. 22(5): p. 563-7.
42. Veeranagouda, Y., F. Husain, and H.M. Wexler, Transposon mutagenesis of Bacteroides fragilis using a mariner transposon vector. Anaerobe, 2013. 22: p. 126-9.
43. de Lorenzo, V., et al., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol, 1990. 172(11): p. 6568-72.
44. Herrero, M., V. de Lorenzo, and K.N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol, 1990. 172(11): p. 6557-67.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49443-
dc.description.abstract研究顯示因現代人多攝食富含膽鹼及肉鹼的海鮮類以及紅肉,其會被腸道菌叢代謝產生三甲胺(trimethylamine),再被肝臟代謝成氧化三甲胺(trimethylamine-N-oxide),這些代謝產物會促進心血管疾病的發生。我們的合作團隊也發現某些腸道菌與三甲胺的產生具關聯性,以血漿中具有較高濃度氧化三甲胺的受試者的糞便檢體進行宏基因組定序(shotgun metagenomic sequencing),得到得到瘤胃球菌屬Ruminococcus bicirculans、氣味桿菌屬Odoribacter splanchnicus 以及腸桿菌屬Bateroides cellulosilyticus 可能為代謝膽鹼(choline)、肉鹼(carnitine)或g-丁基甜菜鹼(g-butyrobetaine)形成三甲胺的菌種。另外,合作團隊以16S 核醣體DNA進行次世代定序分析較多的受試者糞便檢體後,發現血漿中具有較高濃度氧化三甲胺的部分受試者之糞便檢體含有已證實與三甲胺產生有關之厭氧菌Emergencia timonensis,以及研究Ihubacter massiliensis 。本研究欲分離B. cellulosilyticus 菌株以及I. massiliensis,並測試其是否能代謝膽鹼或肉鹼產生三甲胺。結果顯示可由受試者O27 的糞便中培養出B. cellulosilyticus,命名為B. cellulosilyticus O27 ;I. massiliensis 則尚在分離中。但B. cellulosilyticus O27 似乎不具有代謝膽鹼或肉鹼產生三甲胺的能力。待I. massiliensis 分離出來後,期許能找出其是否具有代謝膽鹼、肉鹼或g-丁基甜菜鹼產生三甲胺的能力,並找出其基因為何。zh_TW
dc.description.abstractRecent studies show that dietary choline and L-carnitine, nutrient in seafood and red meat, are converted into trimethylamine (TMA) via gut microbiota-dependent multistep pathway and converted into trimethylamine-N-oxide (TMAO) by hepatic enzyme. The metabolite, TMAO plays an important role in cardiovascular disease (CVD). For example, TMAO accelerates atherosclerosis.
Our co-laboratory developed an oral carnitine challenge test (OCCT) to simulate the postprandial plasma TMAO. We cultured the stool samples from healthy volunteers who were accepted OCCT. By shotgun metagenomic sequencing analysis, the data showed that healthy volunteers with high concentrations of TMAO in plasma after OCCT had high proportion of Ruminococcus bicirculans, Odoribacter splanchnicu, and Bateroides cellulosilyticus in their gut microbiota. Moreover, they analyzed healthy OCCT volunteers’ stool samples by bacterial 16S ribosomal DNA sequencing, and found that Emergencia timonensis, which could metabolize g-butyrobetaine to TMA, was significantly enriched in 25.5 % high-TMAO producers. They also found that Ihubacter massiliensis was enriched in 23.5 % high-TMAO producers and both of them were enriched in 5.9 % high-TMAO producers. We want to culture and isolate B. cellulosilyticus and I. massiliensis and investigate whether they could metabolize choline, L-carnitine or g-butyrobetaine to TMA. Our results found that B. cellulosilyticus was not able to metabolize choline, L-carnitine or g-butyrobetaine to TMA. We have yet to culture I. massiliensis.
In our conclusion, B. cellulosilyticus was not the gut microbiota which were able to convert choline, L-carnitine or g-butyrobetaine into TMA. I. massiliensis may be the functional bacteria, we have to isolate I. massiliensis and investigate the function of metabolizing choline, L-carnitine or g-butyrobetaine.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:28:56Z (GMT). No. of bitstreams: 1
U0001-1208202014483400.pdf: 19957599 bytes, checksum: cf4e3b1af15342622aa1701c3cb41029 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 腸道菌叢(gut microbiota) 1
1.2 心血管疾病(cardiovascular disease,CVD) 1
1.3 腸道菌叢與心血管疾病的關聯 2
1.4 可能產生三甲胺的菌株 4
1.5 Bateroides cellulosilyticus 5
1.6 Ihubacter massiliensis 5
1.7 研究動機(Aim) 6
第二章 材料與方法 7
2.1 材料 7
2.1.1 糞便檢體 7
2.1.2 菌株(strain) 7
2.1.3 培養基(media) 7
2.1.4 引子(primer) 7
2.1.5 質體(plasmids) 7
2.1.6 抗生素(antibiotics) 7
2.2 方法 8
2.2.1 菌株培養 8
2.2.2 糞便之腸道微生物培養 8
2.2.3 萃取糞便之基因組DNA 9
2.2.4 萃取細菌之基因組DNA 9
2.2.5 萃取細菌之質體DNA 10
2.2.6 聚合酶連鎖反應 11
2.2.7 菌落聚合酶連鎖反應 11
2.2.8 分離Bateroides cellulosilyticus 12
2.2.9 分離Ihubacter massiliensis 13
2.2.10 膽鹼、肉鹼以及-丁基甜菜鹼之代謝利用實驗 14
2.2.11 氘標定之膽鹼、肉鹼以及-丁基甜菜鹼之代謝利用實驗 14
2.2.12 腸道微生物的藥物敏感性測試 14
2.2.13 熱休克之勝任細胞的製備 15
2.2.14 電穿孔之腸道微生物勝任細胞的製備 15
2.2.15 以熱休克的方式轉殖質體至腸道微生物 15
2.2.16 以電穿孔的方式轉殖質體至腸道微生物 16
2.2.17 以接合作用的方式轉殖質體至腸道微生物 16
第三章 實驗結果 18
3.1 以菌落聚合酶連鎖反應分離菌種 18
3.1.1 Bateroides cellulosilyticus 18
3.1.2 Ihubacter massiliensis 19
3.2 膽鹼、肉鹼與-丁基甜菜鹼之代謝利用實驗 19
3.3 腸道微生物的藥物敏感性 20
3.3.1 Bateroides cellulosilyticus 20
3.4 腸道微生物cutC/D 基因比對 21
3.4.1 Bateroides cellulosilyticus 21
3.4.2 Emergencia timonensis 22
3.5 腸道微生物基因操作 23
3.5.1 Bateroides cellulosilyticus 23
3.5.2 Emergencia timonensis 23
第四章 討論 25
第五章 參考文獻 27
dc.language.isozh-TW
dc.title分離高三甲胺產生表型之相關菌種及其功能分析zh_TW
dc.titleIsolation and functional characterization of bacterial species associated with high trimethylamine producing phenotypeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴信志(Hsin-Chih Lai),林妙霞(MIAO-HSIA LIN)
dc.subject.keyword心血管疾病,腸道菌叢,三甲胺,Bateroides cellulosilyticus,Ihubacter massiliensis,zh_TW
dc.subject.keywordCardiovascular disease,Gut microbiota,Trimethylamine,TMA,Bateroides cellulosilyticus,Ihubacter massiliensis,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202003093
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
U0001-1208202014483400.pdf
  目前未授權公開取用
19.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved