請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49440
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州(Yao-Joe Yang) | |
dc.contributor.author | Fu-Wei Lee | en |
dc.contributor.author | 李府威 | zh_TW |
dc.date.accessioned | 2021-06-15T11:28:47Z | - |
dc.date.available | 2018-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | [1] S.-M. Song and K. J. Waldron, 'Machines that walk: the adaptive suspension vehicle.' MIT press, 1989.
[2] R. B. McGhee and A. L. Pai. 'An approach to computer control for legged vehicles.' Journal of Terramechanics 11.1 (1974): 9-27. [3] M. H. Raibert, 'Hopping in legged systems—modeling and simulation for the two-dimensional one-legged case.' IEEE Transactions on Systems, Man, and Cybernetics 3 (1984): 451-463. [4] M. H. Raibert, H. B. Brown, and M. Chepponis, 'Experiments in balance with a 3D one-legged hopping machine.' The International Journal of Robotics Research 3.2 (1984): 75-92. [5] M. H. Raibert, R. Playter, R. Ringrose, D. Bailey, and K. Leeser, 'Dynamic Legged Locomotion in Robots and Animals.' MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1995. [6] W. Lee and M. H. Raibert, 'Control of hoof rolling in an articulated leg.' International Conference on Robotics and Automation, 1991 [7] G. J. Zeglin, 'Uniroo: A one legged dynamic hopping robot.' Massachusetts Institute of Technology, 1991. [8] Mirko Kovac, Martin Fuchs, Andre Guignard, Jean-Christophe Zufferey, and Dario Floreano, 'A miniature 7g jumping robot,' IEEE International Conference on Robotics and Automation, 2008. [9] Mirko Kovaˇc, Manuel Schlegel, Jean-Christophe Zufferey and Dario Floreano , 'A Miniature Jumping Robot with Self-Recovery Capabilities,' IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. [10] Jianguo Zhao, Ruiguo Yang, Ning Xi, Bingtuan Gao, Xinggang Fan, Matt W. Mutka, and Li Xiao, 'Development of a miniature self-stabilization jumping robot.' IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009. [11] Fei Li, Weiting Liu, Xin Fu, Gabriella Bonsignori, Umberto Scarfogliero, Cesare Stefanini, Paolo Dario, 'Jumping like an insect: Design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration.' Mechatronics, pp. 167-176, 2012. [12] J. Zhao et al., Jianguo Zhao, Jing Xu, Bingtuan Gao, Ning Xi, Fernando J. Cintr´on, Matt W. Mutka, and Li Xiao, 'MSU jumper: A single-motor-actuated miniature steerable jumping robot.' IEEE Transactions on Robotics , pp.602-614, 2013. [13] Jianguo Zhao, Tianyu Zhao, Ning Xi, Matt W. Mutka, Li Xiao, 'MSU Tailbot: Controlling aerial maneuver of a miniature-tailed jumping robot.' IEEE/ASME Transactions on Mechatronics, pp.2903-2914, 2015. [14] Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, and Kyu-Jin Cho, 'Flea-inspired catapult mechanism for miniature jumping robots.' IEEE Transactions on Robotics, pp.1007-1018, 2012. [15] Duane W. Marhefka, David E. Orin, James P. Schmiedeler, and Kenneth J. Waldron, 'Intelligent control of quadruped gallops.' IEEE/ASME Transactions On Mechatronics , pp.446-456, 2003. [16] Estremera, Joaquin, and Pablo Gonzalez de Santos. 'Generating continuous free crab gaits for quadruped robots on irregular terrain.' IEEE Transactions on Robotics pp.1067-1076, 2005. [17] Floyd, Steven, and Metin Sitti, 'Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot.' IEEE transactions on robotics, pp698-709, 2008. [18] Hiroshi Takemura, Masato Deguchi, Jun Ueda, Yoshio Matsumoto, Tsukasa Ogasawara,'Slip-adaptive walk of quadruped robot.' Robotics and Autonomous Systems, pp.124-141, 2005. [19] James Andrew Smith, Ioannis Poulakakis, Michael Trentini, and Inna Sharf, 'Bounding with active wheels and liftoff angle velocity adjustment.' The International Journal of Robotics Research, 2009. [20] Guangming Song, Kaijian Yin, Yaoxin Zhou and Xiuzhen Cheng, 'A surveillance robot with hopping capabilities for home security.' IEEE Transactions on Consumer Electronics, pp. 2034-2039, 2009. [21] Ya-Cheng Chou, Ke-Jung Huang, Wei-Shun Yu, and Pei-Chun Lin, 'Model-based development of leaping in a hexapod robot.' IEEE Transactions on Robotics, pp.40-54, 2015. [22] Thibodeau, Bryan J., Patrick Deegan, and Roderic Grupen. 'Static analysis of contact forces with a mobile manipulator.' IEEE International Conference on Robotics and Automation, 2006. [23] Grupen, Roderic, and Oliver Brock. 'White paper: Integrating manual dexterity with mobility for human-scale service robotics-the case for concentrated research into science and technology supporting next-generation robotic assistants.' ,2004. [24] Deegan, Patrick, Bryan J. Thibodeau, and Roderic Grupen, 'Designing a self-stabilizing robot for dynamic mobile manipulation.' MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER SCIENCE, 2006. [25] Felix Grasser, Aldo D’Arrigo, Silvio Colombi, and Alfred C. Rufer, 'JOE: a mobile, inverted pendulum.' IEEE Transactions on industrial electronics , pp.107-114, 2002. [26] Morrell, John B., and Doug Field. 'Design of a closed loop controller for a two wheeled balancing transporter.' IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. [27] S.H. Lee , Y. Saito, T. Sakai, H. Utsunomiya, 'Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding.' Materials Science and Engineering: A , pp.228-235, 2002. [28] http://tw.misumi-ec.com/ [29] Rehbinder, Henrik, and Xiaoming He. 'Nonlinear pitch and roll estimation for walking robots,' IEEE International Conference on Robotics and Automation, 2000. [30] Mahony, Robert, Tarek Hamel, and Jean-Michel Pflimlin. 'Nonlinear complementary filters on the special orthogonal group.' IEEE Transactions on Automatic Control, pp.1203-1218, 2008. [31] David Jurman, Marko Jankovec, Roman Kamnik, and Marko Topiˇc, 'Calibration and data fusion solution for the miniature attitude and heading reference system.' Sensors and Actuators A: Physical, pp.411-420, 2007. [32] Ziegler, John G., and Nathaniel B. Nichols. 'Optimum settings for automatic controllers.' trans. ASME, 1942. [33] Arduino Leonardo簡介:https://www.arduino.cc/en/Main/ArduinoBoardLeonardo [34] Digiky網頁:http://media.digikey.com/ [35] InvenSense網頁:https://www.invensense.com/ [36] Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd edition, Cambridge University Press, Cambridge, England, 1989, ISBN 0-521-37095-7 [37] Pololu 網頁:https://www.pololu.com/ [38] Tamagawa網頁: http://www.tamagawa-seiki.com/english/index.html [39] ST網頁:http://www.st.com/ [40] 祥儀網頁:http://www.shayye.com.tw/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49440 | - |
dc.description.abstract | 本研究提出了一個可跳躍的雙輪平衡移動機器人。一般而言,雙輪機器人具有高機動性、體積小等優勢。透過在雙輪機器人的基礎上裝設跳躍機構,變能實驗雙輪機器人的跳躍功能,使得機器人能同時具有移動與平衡之功能。
本研究所提出的機器人可分成三部分討論:機器人的跳躍動作、機器人平衡與機器人的移動。在跳躍動作的部分,本研究的跳躍機構包含了凸輪、彈簧與插銷三個部分。藉由操控滑輪,可於機器人移動時完成彈簧的壓縮。彈簧受到壓縮時,能量將以彈力位能的方式儲存。當彈簧釋放,彈力位能瞬間轉換為動能,使得機器人向上方垂直跳躍,完成跳躍的動作。在機器人平衡的方面,其平衡系統由感測器、兩個步進馬達與微控制器組成。其中,感測器將用於量測機器人的傾斜角度。此角度將被作為PID控制器的誤差使用。經由計算後,將決定微控制器的輸出並控制馬達的轉速。利用此方式,便可將完成機器人的平衡。而於機器人的移動方面,則是藉由改變質心的方式實現。藉由RC servo motor配合連桿機構的方式,調整機器人的質心位置。當質心改變時,機器人的平衡會暫時性的受到干擾。此時,機器人將往質心偏移的方向前進,回復機器人本身的平衡,並完成移動之功能。 此外,本研究亦量測了機器人的平衡性能。亦使用了兩種不同彈性係數的彈簧作跳躍測試。量測結果顯示,本研究所提出的機器人之跳躍高度最高可達13公分,能量轉換效率約為40%。 | zh_TW |
dc.description.abstract | This thesis presents the development and characterization of a self-balancing two-wheeled jumping robot, which features advantages such as high maneuverability and small size. By integrating the self-balancing two-wheeled robot and the jumping mechanism, both the jumping motion and moving motion can be achieved.
The proposed robot consists of three parts: the jumping mechanism, the self-balancing system, and the translational motion initialization mechanism. The jumping mechanism consists of a cam, a spring and a latch. By actuating the cylinder cam, the spring is compressed and thus the elastic potential energy is stored in the spring. As the spring relaxed, the elastic potential energy is converted into kinetic energy, thus the robot jumps impulsively upward. The self-balancing system of the robot consists of a motion tracking device, two step motors, and a microcontroller. The tilt angle of the robot is measured and served as the error of the PID controller to determine the controller output. The angular velocity of the step motor is then computed to keep the balance of the robot. The translational motion of the robot can be initialized by changing the center of mass, which is realized by using a linkage mechanism. As the center of mass changes, the balance is disturbed, and the robot responds immediately to recover its balance, which gives rise to the translational motion of the robot. The balance stabilization and jumping of robot were demonstrated. By using rigid wheels, the jumping height is more than 30 cm with energy conversion efficiency of more than 80%. Soft wheels were also employed for smooth jumping motion. The maximum jumping height is 13cm and the conversion efficiency is 40%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:28:47Z (GMT). No. of bitstreams: 1 ntu-105-R03522710-1.pdf: 5190151 bytes, checksum: 79cec16407ad0190278687b4c2e343b9 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
致謝 i 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.2.1 跳躍式機器人 2 1.2.2 移動機器人 11 1.3 研究動機與目的 16 1.4 論文架構 17 第二章 理論與設計 18 2.1 前言 18 2.2 整體設計 19 2.3 彈跳機構 23 2.3.1 機構設計 23 2.3.2 彈跳能量理論 27 2.3.3 凸輪機構設 30 2.4 平衡移動機構 37 2.5 重心調整機構 40 2.6 傾斜姿態角度推算 42 2.6.1 尤拉角法 (Euler angle) 44 2.6.2 四元數法 (Quaternion) 47 第三章 控制器設計 50 3.1 前言 50 3.2 比例-積分-微分控制器(PID controller) 50 3.3 參數調整演算法(Tuning algorithm) 55 3.4 機器人控制系統流程 56 3.4.1 彈跳控制 58 3.4.2 平衡控制 59 3.4.3 移動控制 61 第四章 驅動控制及感測 64 4.1 核心處理器 65 4.2 機器人平衡移動控制 68 4.3 機器人彈跳控制 76 第五章 硬體架設與實驗 81 5.1 兩輪倒單擺機器人平衡移動控制實驗 81 5.1.1 實驗架設 81 5.1.2 實驗數據與討論 83 5.2 彈跳機構影響馬達扭力實驗 88 5.2.1 實驗架設 89 5.2.2 實驗數據與討論 92 5.3 凸輪彈簧彈跳機構彈跳實驗 95 5.3.1 實驗架設 96 5.3.2 實驗數據與討論 97 第六章 結論與未來展望 100 6.1 結論 100 6.2 未來展望 101 參考文獻 102 | |
dc.language.iso | zh-TW | |
dc.title | 可跳躍之雙輪平衡移動機器人開發 | zh_TW |
dc.title | Development of a self-balancing two-wheeled jumping robot | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇裕軒,陳國聲(Kuo-Shen Chen),莊嘉揚(Jia-Yang Juang) | |
dc.subject.keyword | 凸輪,雙輪機器人,自平衡,跳躍機器人, | zh_TW |
dc.subject.keyword | cam,two-wheeled robot,self-balancing,jumping robot, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201603074 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。