請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳柏華(Albert Y. Chen) | |
| dc.contributor.author | Cheng-Ta Lee | en |
| dc.contributor.author | 李政達 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:27:33Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-17 | |
| dc.identifier.citation | [1]U.S. Department of Labor Occupational Safety and Health Administration, “Cardiac Arrest and Automated External Defibrillators (AEDs),” OSHA Publication. [Online]. Available: http://books.google.com/books?hl=en&lr=&id=EbsZ9lSO9SIC&oi=fnd&dq=Technical+Information+Bulletin&ots=igrkPaiIaW&sig=tfHCbdUDoUzXszC5mLint9wqgaQ.
[2] A. Chen, T.-Y. Lu, M. Ma, and W.-Z. Sun, “Demand Forecast using Data Analytics for the Pre-allocation of Ambulances,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. c, pp. 1–1, 2015. [3] T. H. D. Dao, Y. Zhou, J. Thill, and E. Delmelle, “Spatio-temporal location modeling in a 3D indoor environment: the case of AEDs as emergency medical devices,” Int. J. Geogr. Inf. Sci., vol. 26, no. 3, pp. 469–494, 2012. [4] A. Y. Chen and T. Huang, “Toward BIM-Enabled Decision Making for In-Building Response Missions,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2765–2773, 2015. [5] H. Mayer, W. Klein, C. Frey, S. Daum, P. Kielar, and A. Borrmann, “Pedestrian Simulation based on BIM Data,” Proc. ASHRAE/IBPSA-USA Build. Simul. Conf., no. January 2014, pp. 425–432, 2014. [6] S. Taneja, B. Akinci, J. H. Garrett, and L. Soibelman, “Algorithms for automated generation of navigation models from building information models to support indoor map-matching,” Autom. Constr., vol. 61, pp. 24–41, 2016. [7] J. Lee, “A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities,” Geoinformatica, vol. 8, no. 3, pp. 237–264, 2004. [8] U. Rüppel, P. Abolghasemzadeh, and K. Stübbe, “BIM-based immersive indoor graph networks for emergency situations in buildings,” Int. Conf. Comput. Civ. Build. Eng., no. August 2006, pp. 1–7, 2010. [9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms. Springer, 2002. [10] R. M. Karp, “Reducibility among combinatorial problems,” in 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, 2010, pp. 219–241. [11] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.,” Science (80-. )., vol. 286, no. 5439, pp. 531–537, 1999. [12] J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, R. R. Horvitz, and T. R. Golub, “Microrna expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. [13] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, “Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms,” Manage. Sci., vol. 25, no. 8, pp. 808–809, 1979. [14] B. Saglam, F. S. Salman, S. . Sayin, and M. Türkay, “A mixed-integer programming approach to the clustering problem with an application in customer segmentation.,” Eur. J. Oper. Res., vol. 173, pp. 866–879, 2006. [15] S. L. Hakimi, “Optimum distributions of switching centers in a communication network and some related graph theoretic problems.,” Oper. Res., vol. 13, pp. 462–475, 1965. [16] J. M. Mulvey and H. P. Crowder, “Cluster analysis: an application of lagrangian relaxation,” Manage. Sci., vol. 25, pp. 329–340, 1979. [17] M. Nascimento, F. Toledo, and A. Carvalho, “A Hybrid Heuristic for the K-medoids Clustering Problem,” in Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, 2012, pp. 417–424. [18] M. L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming Problems,” Manage. Sci., vol. 50, no. 12 Supplement, pp. 1861–1871, 2004. [19] A. Geoffrion and R. M. Bride, “Lagrangean Relaxation Applied to Capacitated Facility Location Problems,” AIIE Trans., vol. 10, no. 1, pp. 40–47, 1978. [20] K. Holmberg, M. Rönnqvist, and D. Yuan, “An exact algorithm for the capacitated facility location problems with single sourcing,” Eur. J. Oper. Res., vol. 113, no. 3, pp. 544–559, 1999. [21] J. Handl and J. Knowles, “An evolutionary approach to multiobjective clustering.,” IEEE Trans. Evol. Comput., vol. 11, pp. 56–76, 2007. [22] Y.-C. Chiou and L. W. Lan, “Genetic clustering algorithms,” Eur. J. Oper. Res., vol. 135, no. 2, pp. 413–427, 2001. [23] L. Qi, Z.-J. M. Shen, and L. V. Snyder., “The effect of supply Disruptions on supply chain design decisions.,” Transp. Sci., vol. 44, no. 2, pp. 274–289, 2010. [24] T. Cui, Y. Ouyang, and Z.-J. M. Shen, “Reliable Facility Location Design Under the Risk of Disruptions.,” Oper. Res., vol. 58, no. 4-part-1, pp. 998–1011, 2010. [25] L. V. Snyder and M. S. Daskin, “Reliability models for facility location: The expected failure cost case.,” Transp. Sci., vol. 39, no. 3, pp. 400–416, 2005. [26] S. An, N. Cui, X. Li, and Y. Ouyang, “Reliable pickup locations for transit-based evacuation under the risk of service disruptions,” Transp. Res. Part B, vol. 54, no. 1, pp. 1–16, 2013. [27] S. Xie, X. Li, and Y. Ouyang, “Decomposition of general facility disruption correlations via augmentation of virtual supporting stations.,” Transp. Res. Part B, vol. 80, pp. 64–81, 2015. [28] J.-B. Sheu and C. Pan, “A method for designing centralized emergency supply network to respond to large-scale natural disasters,” Transp. Res. Part B, vol. 67, pp. 284–305, 2014. [29] J.-B. Sheu, “Post-disaster relief–service centralized logistics distribution with survivor resilience maximization,” Transp. Res. Part B, vol. 68, pp. 188–314, 2014. [30] W. Yi and A. Kumar, “Ant colony optimization for disaster relief operations,” Transp. Res. Part E, vol. 43, no. 6, pp. 660–672, 2007. [31] W. Yi and L. Özdamar, “A Dynamic Logistics Coordination Model for Evacuation and Support in Disaster Response Activities,” Eur. J. Oper. Res., vol. 179, no. 3, pp. 1177–1193, 2007. [32] L. Ozdamar and O. Demir, “A hierarchical clustering and routing procedure for large scale disaster relief logistics planning,” Transp. Res. Part E, vol. 48, pp. 591–602, 2012. [33] M. Najafi, K. Eshghi, and W. Dullaert, “A multi-objective robust optimization model for logistics planning in the earthquake response phase,” Transp. Res. Part E, vol. 49, pp. 217–249, 2013. [34] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, “The Location of Emergency Service Facilities,” Oper. Res., vol. 19, no. 6, pp. 1363–1373, 1971. [35] J. C. Chu and C. Yeh, “Emergency Evacuation Guidance Design for Complex Building Geometries,” J. Infrastruct. Syst., vol. 18, no. 4, pp. 288–296, 2012. [36] Autodesk, Revit 2014 API developer guide. San Rafael, CA., 2014. [37] A. Y. Chen and C.-Y. Chang, “Using HOG for Video-Based Human Detection for In-Building Emergency Response,” 2015. [38] “INRIA Person Data Set,” 2005. [Online]. Available: http://pascal.inrialpes.fr/data/human/. [39] “MIT Pedestrian Database MITP,” 2000. [Online]. Available: http://cbcl.mit.edu/software-datasets/PedestrianData.html. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49413 | - |
| dc.description.abstract | 當有病患心臟病發時,旁人能否在一定時間內取得自動體外心臟除顫器將會大幅影響該病患的生存機會。根據現有法規規定,在公共場合如捷運站、高鐵站、轉運站、飛機場及學校建物…等,都必須設置自動體外心臟除顫器在容易被發現的位置,也必須在樓層平面圖上有所標示,卻未對於自動體外心臟除顫器的服務效能及數量有所規定。因此本研究期望藉由最佳化模式進行自動體外心臟除顫器的選址,也和建物內現有自動體外心臟除顫器的覆蓋作比較,期望能增進自動體外心臟除顫器在建物內部的服務品質。
本研究為了降低人工處理的成本,引入了建築資訊模型,自動化建立室內建物的三維空間路網。建築資訊模型紀錄了建物空間內部的幾何特性,利用我們改良的演算法,將其內部的障礙物邊界及通道資訊取出後,產生整棟建物內部的中軸路網。並藉案例評估及規劃自動體外心臟除顫器的數量及位置。 | zh_TW |
| dc.description.abstract | Automated external defibrillators (AED), which are used as an emergency medical device for heart attacks, are required to be placed in the critical transportation facilities such as metro rapid transit (MRT) stations or high speed rail (HSR) stations. However, location performance of current installations should be evaluated for appropriateness, and optimized. In this paper, we aim to develop models for the evaluation and optimization of the accessibility of in-building AED coverage. To achieve our goal, we retrieve building geometry from Building Information Modeling (BIM) models for network construction and further modeling. In this work, we determine the number of required AEDs given a performance requirement, or whether the coverage of existing AEDs is appropriate, based on the constructed network. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:27:33Z (GMT). No. of bitstreams: 1 ntu-105-R03521504-1.pdf: 1693740 bytes, checksum: 32dc921903bba590397daed8fd56e0dd (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objective 2 1.3 Research Assumption 2 1.4 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Building Information Modeling 4 2.2 Graph Construction 5 2.3 Facilities Location Problem 6 2.4 Summary 7 Chapter 3 Methodology 9 3.1 Geometric Data from BIM Model 9 3.2 Route Network Construction 10 3.3 Human Detection and Counting 19 3.3.1 Classifier Training 19 3.3.2 Detection 20 3.4 Model Formulation for Use Cases 20 3.4.1 Guiding 20 3.4.2 P-Median Planning Model 23 3.4.3 Goal Coverage 27 3.4.4 Evaluate 30 Chapter 4 Validation & Case Study 32 4.1 Case Study 32 4.2 Sensitivity of the Planning Model 36 Chapter 5 Conclusion & Future work 39 REFERENCE 41 | |
| dc.language.iso | en | |
| dc.subject | 中軸轉換 | zh_TW |
| dc.subject | 自動體外心臟除顫器 | zh_TW |
| dc.subject | 選址問題 | zh_TW |
| dc.subject | 建築資訊模型 | zh_TW |
| dc.subject | 路網圖 | zh_TW |
| dc.subject | Location planning | en |
| dc.subject | Medial axis transformation | en |
| dc.subject | Graph | en |
| dc.subject | Building Information Modeling | en |
| dc.subject | Automated external defibrillators | en |
| dc.title | 利用建築資訊模型考量空間建物特性之自動體外心臟除顫器選址問題 | zh_TW |
| dc.title | Location Planning of AED Deployment through Building Information Modeling Considering the Spatial Properties of Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏上堯(Shang-Yao Yan),李宇欣(Yu-sin Lee),賴勇成(Yung-Cheng Lai) | |
| dc.subject.keyword | 自動體外心臟除顫器,選址問題,建築資訊模型,路網圖,中軸轉換, | zh_TW |
| dc.subject.keyword | Automated external defibrillators,Location planning,Building Information Modeling,Graph,Medial axis transformation, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201602611 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
