Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49407
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊
dc.contributor.authorKuang-Tien Kuoen
dc.contributor.author郭洸廷zh_TW
dc.date.accessioned2021-06-15T11:27:16Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation1. Knepper, M.A., Aquaporins in the Kidney. Physiol Rev, 2002. 82: p. 205-244.
2. Ikeda, M. and T. Matsuzaki, Regulation of aquaporins by vasopressin in the kidney. Vitam Horm, 2015. 98: p. 307-37.
3. Knepper, M.A., T.H. Kwon, and S. Nielsen, Molecular physiology of water balance. N Engl J Med, 2015. 372(14): p. 1349-58.
4. Nielsen, S., et al., Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1013-7.
5. Moeller, H.B., et al., Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A, 2010. 107(1): p. 424-9.
6. Matsumura, Y., et al., Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol, 1997. 8(6): p. 861-7.
7. Wilson, J.L., C.A. Miranda, and M.A. Knepper, Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol, 2013. 17(6): p. 751-64.
8. Lee, J.W., C.L. Chou, and M.A. Knepper, Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes. J Am Soc Nephrol, 2015. 26(11): p. 2669-77.
9. Furuno, M., et al., Repressive regulation of the aquaporin-2 gene. Am J Physiol, 1996. 271(4 Pt 2): p. F854-60.
10. Chassin, C., M. Bens, and A. Vandewalle, Transimmortalized proximal tubule and collecting duct cell lines derived from the kidneys of transgenic mice. Cell Biol Toxicol, 2007. 23(4): p. 257-66.
11. Vandewalle, A., Immortalized renal proximal and collecting duct cell lines derived from transgenic mice harboring L-type pyruvate kinase promoters as tools for pharmacological and toxicological studies. Cell Biol Toxicol, 2002. 18(5): p. 321-8.
12. Miquerol, L., et al., Tissue specificity of L-pyruvate kinase transgenes results from the combinatorial effect of proximal promoter and distal activator regions. Gene Expr, 1996. 5(6): p. 315-30.
13. Munnich, A., et al., In vivo hormonal control of L-type pyruvate kinase gene expression. Effects of glucagon, cyclic AMP, insulin, cortisone, and thyroid hormones on the dietary induction of mRNAs in the liver. J Biol Chem, 1984. 259(16): p. 10228-31.
14. Zeng, F. and R.C. Harris, Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol, 2014. 28: p. 2-11.
15. Bustamante, M., et al., Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am J Physiol Renal Physiol, 2005. 288(2): p. F334-44.
16. Chen, M., et al., Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions. Front Physiol, 2015. 6: p. 310.
17. Yasui, M., et al., Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol, 1996. 271(2 Pt 2): p. F461-8.
18. Yu, M.J., et al., Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2441-6.
19. Hasler, U., et al., NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem, 2008. 283(42): p. 28095-105.
20. Yasui, M., et al., Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol, 1997. 272(4 Pt 2): p. F443-50.
21. Moeller, H.B., S. Rittig, and R.A. Fenton, Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev, 2013. 34(2): p. 278-301.
22. Jackson, B.A., et al., Concentrating defect in the adrenalectomized rat. Abnormal vasopressin-sensitive cyclic adenosine monophosphate metabolism in the papillary collecting duct. J Clin Invest, 1983. 72(3): p. 997-1004.
23. Rayson, B.M., C. Ray, and T. Morgan, The effect of adrenocortical hormones on water permeability of the collecting duct of the rat. Pflugers Arch, 1978. 373(2): p. 105-12.
24. Kortenoeven, M.L., et al., In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am J Physiol Renal Physiol, 2012. 302(11): p. F1395-401.
25. Elks, M.L., V.C. Manganiello, and M. Vaughan, Effect of dexamethasone on adenosine 3',5'-monophosphate content and phosphodiesterase activities in 3T3-L1 adipocytes. Endocrinology, 1984. 115(4): p. 1350-6.
26. Ahlstrom, M., et al., Dexamethasone down-regulates cAMP-phosphodiesterase in human osteosarcoma cells. Biochem Pharmacol, 2005. 69(2): p. 267-75.
27. Jeon, Y.J., et al., Inhibition of NF-kappa B/Rel nuclear translocation by dexamethasone: mechanism for the inhibition of iNOS gene expression. Biochem Mol Biol Int, 1998. 45(3): p. 435-41.
28. Longoni, N., et al., ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-kappaB and drives prostate cancer progression. Cancer Res, 2013. 73(14): p. 4533-47.
29. Marcu, K.B., et al., NF-κB Signaling: Multiple angles to target OA. 2010. 11(5): p. 599-613.
30. Doiron, B., et al., Respective roles of glucose, fructose, and insulin in the regulation of the liver-specific pyruvate kinase gene promoter. J Biol Chem, 1994. 269(14): p. 10213-6.
31. Klein, J.D., et al., Adrenalectomy blocks the compensatory increases in UT-A1 and AQP2 in diabetic rat kidney. J Membr Biol, 2006. 212(2): p. 139-44.
32. Li, C., et al., Downregulation of UT-A1/UT-A3 Is Associated with Urinary Concentrating Defect in Glucocorticoid-Excess State. J Am Soc Nephrol, 2008. 19(10): p. 1975-81.
33. Saito, T., et al., Vasopressin-dependent upregulation of aquaporin-2 gene expression in glucocorticoid-deficient rats. Am J Physiol Renal Physiol, 2000. 279(3): p. F502-8.
34. Wang, W., et al., Molecular analysis of impaired urinary diluting capacity in glucocorticoid deficiency. Am J Physiol Renal Physiol, 2006. 290(5): p. F1135-42.
35. Kovacs, K.J., A. Foldes, and P.E. Sawchenko, Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons. J Neurosci, 2000. 20(10): p. 3843-52.
36. McCulloch, C.A. and H.C. Tenenbaum, Dexamethasone induces proliferation and terminal differentiation of osteogenic cells in tissue culture. Anat Rec, 1986. 215(4): p. 397-402.
37. Hill, S., A. Yang, and L. Bero, Priority medicines for maternal and child health: a global survey of national essential medicines lists. PLoS One, 2012. 7(5): p. e38055.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49407-
dc.description.abstract第二型水通道蛋白質(AQP2)表現於腎臟集尿管中,並且參與腎臟的水分再吸收作用。AQP2的基因表現會受到抗利尿激素(arginine vasopressin (AVP))的調控,但其分子機制尚不清楚。為了進一步研究調控AQP2的分子機制,科學家嘗試建立細胞株作為研究平台。但可能因為建立的過程使細胞喪失集尿管細胞的特性,因此許多細胞株都無法對AVP的刺激產生反應並表現內生性的AQP2。這個問題直到Vandewalle的團隊用「Trans-immortalization」的方式建立小鼠集尿管細胞株(mpkCCD)後才獲得解決。mpkCCD藉由攜帶一段在丙酮酸激酶(LPK)的啟動子後方接上SV40 large T抗原基因的DNA片段,使細胞穩定表現T抗原,藉此幫助細胞維持生長的能力。科學家也透過在培養液中加入dexamethasone (Dex)、表皮生長因子、胰島素及甲狀腺素等賀爾蒙來幫助活化LPK啟動子,以維持T抗原的表現。這些賀爾蒙也曾被報導對AQP2基因表現可能有不同的影響,因此在這份研究中,我針對Dex、表皮生長因子、胰島素及甲狀腺素是否影響mpkCCD細胞中AQP2的表現進行探討。我發現Dex會提升AVP所誘導的AQP2蛋白質表現量,而此增加並非透過影響AQP2的蛋白穩定性。此外,AQP2在Dex處理之下所提升的蛋白表現量及mRNA表現量有相似的趨勢,此增加也伴隨著AQP2啟動子活性的上升。上述結果顯示Dex可能是透過促進AQP2的轉錄作用,進而提升AQP2 mRNA及蛋白質的表現量。在分子機制方面,我們發現Dex會增加抗利尿激素受體(V2R) mRNA的表現量,顯示Dex可能透過提升V2R mRNA表現來增加細胞對AVP的反應。除此之外,我們也發現Dex提升了Elf3 (一種被認為參與AQP2調控的轉錄因子) mRNA表現量,針對Elf3在AQP2啟動子上的結合位(ETS-binding site)進行突變也降低了Dex對AVP所誘導的AQP2啟動子活性的影響,顯示Dex可能透過增加Elf3 mRNA表現量來調節AVP所誘導的AQP2基因表現。從上述的實驗我們發現了一個能夠提升mpkCCD細胞表現AQP2能力的條件,希望能夠幫助AVP和AQP2相關研究領域的發展。zh_TW
dc.description.abstractAquaporin-2 (AQP2) is a molecular channel protein responsible for osmotic water reabsorption by the kidneys. AQP2 gene expression is tightly regulated by the pituitary peptide hormone called arginine vasopressin (AVP); however, the molecular mechanism is largely unknown. Research in this field has been slow due to the lack of proper cell lines that respond to AVP with endogenous AQP2 expression until the development of the mpkCCD cells. The mpkCCD cells were immortalized by the SV40 large T antigen under the L-type pyruvate kinase promoter. Four hormones (dexamethasone (Dex), epidermal growth factor, insulin and triiodothyronine) were used to drive the LPK promoter and promote cell growth; however, each seems to affect the levels of AVP-induced AQP2 expression. In the present study, we found that Dex, among all hormone supplements, enhanced AVP-induced AQP2 protein expression in a dose- and time-dependent manner without affecting AQP2 protein stability. This increase was accompanied with an increase in the AQP2 promoter activity and AVP-induced AQP2 mRNA levels, indicating that Dex promotes AVP-induced AQP2 protein expression via enhancing AQP2 mRNA transcription. Furthermore, we found that Dex slightly increased the mRNA levels of AVP type 2 receptor (V2R), suggesting that Dex may enhance the cell responses to AVP via increasing V2R mRNA expression. Moreover, Dex also increased the mRNA levels of Elf3, a collecting duct cell-specific transcription factor that binds the ETS-binding site in the AQP2 promoter region. Mutation in the ETS-binding site reduced the effects of Dex on AVP-induced AQP2 promoter activity. These results suggest that Dex probably promotes AQP2 gene expression through enhancing Elf3 gene expression. In summary, we have found an optimal condition to enhance AVP-induced AQP2 gene expression in the mpkCCD and hopefully this finding will facilitate AVP and AQP2 research.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:27:16Z (GMT). No. of bitstreams: 1
ntu-105-R03442012-1.pdf: 2573790 bytes, checksum: 57830ebff62aea39cf602f9c2e84e99a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
Introduction 1
Materials 5
Methods 10
Results 23
Continuous presence of dexamethasone enhanced AVP-induced AQP2 protein expression in the mpkCCD cells 23
Dexamethasone enhanced AVP-induced AQP2 protein expression in a dose- and time-dependent manner in the mpkCCD cells 25
Dexamethasone did not increase AVP-induced AQP2 protein abundance through preventing AQP2 from protein degradation in the mpkCCD cells 27
Dexamethasone enhanced AVP-induced AQP2 gene expression through enhancing AQP2 promoter activity in the mpkCCD cells 28
The presence of dexamethasone in the AQP2 induction phase effectively enhanced AVP-induced AQP2 gene expression in the mpkCCD cells 30
Dexamethasone slightly enhanced V2R gene expression in the mpkCCD cells 33
Mutation in the ETS-binding site in the AQP2 promoter reduced the effects of dexamethasone 34
Discussion 36
Figures and legends 43
Figure1. Continuous presence of dexamethasone enhanced AVP-induced AQP2 protein expression in the mpkCCD cells 43
Figure 2. The experimental treatments with different hormones did not affect the cell polarization in the mpkCCD cells 46
Figure 3. Dexamethasone specifically enhanced AVP-induced AQP2 protein expression in a dose- and time-dependent manner in the mpkCCD cells 47
Figure 4. Dexamethasone did not increase AVP-induced AQP2 protein abundance through preventing AQP2 from protein degradation in the mpkCCD cells 49
Figure 5. Dexamethasone enhanced AVP-induced AQP2 gene expression through enhancing AQP2 promoter activity in the mpkCCD cells 50
Figure 6. The presence of dexamethasone in the AQP2 induction phase effectively enhanced AVP-induced AQP2 gene expression in the mpkCCD cells 52
Figure 7. Dexamethasone enhanced V2R gene expression in the mpkCCD cells 54
Figure 8. Mutation in the ETS-binding site in the AQP2 promoter reduced the effects of dexamethasone 56
References 57
dc.language.isoen
dc.titleDexamethasone促進抗利尿激素誘導小鼠集尿管細胞表現第二型水通道基因zh_TW
dc.titleDexamethasone enhances vasopressin-induced aquaporin-2 gene expression in the mpkCCD Cellsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建國,呂紹俊
dc.subject.keyworddexamethasone,抗利尿激素,mpkCCD,水通道蛋白質,zh_TW
dc.subject.keyworddexamethasone,vasopressin,mpkCCD,aquaporin-2,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201603195
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved