Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49381
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童國倫(Kuo-Lun Tung)
dc.contributor.authorChing-Ting Huangen
dc.contributor.author黃靖婷zh_TW
dc.date.accessioned2021-06-15T11:26:06Z-
dc.date.available2021-08-31
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation[1] Recent trends in the OECD: energy and CO2 emissions, International Energy Agency, 2016.
[2] J. Smid, C.G. Avci, V. Gunay, R.A. Terpstra, J.P.G.M. Van Eijk, Preparation and characterization of microporous ceramic hollow fibre membranes, J. Membr. Sci. 112 (1996) 85.
[3] H.W. Brinkman, J.P.G.M. van Eijk, H.A. Meinema, R.A. Terpstra, Innovative hollow fiber ceramic membranes, Am. Ceram. Soc. Bull. 78 (1999) 51.
[4] J.E. Koresh, A. Sofer, Molecular sieve carbon permselective membrane. Part 1. Presentation of a new device for gas mixture separation, Sep. Sci. Technol. 18 (1983) 723.
[5] J.E. Koresh, A. Sofer, Mechanism of permeation through molecular-sieve carbon membrane. Part 1.-The effect of adsorption and the dependence on pressure, J. Chem. Soc., Faraday Trans. 82 (1986) 2057.
[6] V.M. Linkov, R.D. Sanderson, E.P. Jacobs, Highly asymmetrical carbon membranes, J. Membr. Sci. 95 (1994) 93.
[7] X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membr. Sci. 188 (2001) 87.
[8] J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, R. Leysen, Preparation of LaSrCoFeO3-x membranes, Solid State Ionics 135 (2000) 637.
[9] S. Liu, X. Tan, K. Li, R. Hughes, Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes, J. Membr. Sci. 193 (2001) 249.
[10] J.D. Way, D.L. Roberts, Hollow fiber inorganic membranes for gas separations, Sep. Sci. Technol. 27 (1992) 29.
[11] M. Bhandarkar, A.B. Shelekhin, A.G. Dixon, Y.H. Ma, Adsorption, permeation and diffusion of gases in microporous membranes. I. Adsorption of gases on microporous glass membranes, J. Membr. Sci. 75 (1992) 221.
[12] Y. Shindo, T. Hakuta, H. Yoshitome, H. Inoue, Gas diffusion in microporous media in Knudsen’s regime, J. Chem. Eng. Jpn. 16 (1983) 120.
[13] H.P. Hsieh, Inorganic membrane reactors, Catal. Rev.-Sci. Eng. 33 (1991) 1.
[14] E.S. Kikkinides, R.T. Yang, S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32 (1993) 2714.
[15] R.V. Siriwardane, M.S. Shen, E.P. Fisher, Adsorption of CO2 on zeolites at moderate temperatures, Energy Fuels 19 (2005) 1153.
[16] S.H. Moon, J.W. Shim, A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption, J. Colloid Interface Sci. 298 (2006) 523.
[17] S. Wong, R. Bioletti, Carbon dioxide separation technologies, Carbon & Energy Management Alberta Research Council, 2002.
[18] D.W. Savage, G. Astarita, S. Joshi, Chemical absorption and desorption of carbon dioxide from hot carbonate solutions, Chem. Eng. Sci. 35 (1980) 1513.
[19] A.M. Wolsky, E.J. Daniels, B.J. Jody, CO2 capture from the flue gas of conventional fossil-fuel-fired power plants, Environ. Prog. 13 (1994) 214.
[20] S.M. Yih, K.P. Shen, Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-propanol aqueous solutions, Ind. Eng. Chem. Res. 27 (1988) 2237.
[21] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility, Chem. Eng. Sci. 55 (2000) 5531.
[22] J. Xiao, C.W. Li, M.H. Li, Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine, Chem. Eng. Sci. 55 (2000) 161.
[23] C.H. Liao, M.H. Li, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine, Chem. Eng. Sci. 57 (2002) 4569.
[24] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AIChE J. 48 (2002) 2788.
[25] R.H. Niswander, D.J. Edwards, M.S. DuPart, J.P. Tse, A more energy efficient product for carbon dioxide separation, Sep. Sci. Technol. 28 (1993) 565.
[26] C.R. Clarkson, R.M. Bustin, Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane, Int. J. Coal Geol. 42 (2000) 241.
[27] A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci. 193 (2001) 1.
[28] P. Pandey, R.S. Chauhan, Membranes for gas separation, Prog. Polym. Sci. 26 (2001) 853.
[29] K. Kusakabe, T. Kuroda, A. Murata, S. Morooka, Formation of a Y-type zeolite membrane on a porous ∝-alumina tube for gas separation, Ind. Eng. Chem. Res. 36 (1997) 649.
[30] K. Kusakabe, T. Kuroda, S. Morooka, Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes, J. Membr. Sci. 148 (1998) 13.
[31] S.H. Hyun, J.K. Song, B.I. Kwak, J.H. Kim, S.A. Hong, Synthesis of ZSM-5 zeolite composite membranes for CO2 separation, J. Mater. Sci. 34 (1999) 3095.
[32] K. Kuraoka, N. Kubo, T. Yazawa, Microporous silica xerogel membrane with high selectivity and high permeance for carbon dioxide separation, J. Sol-Gel Sci. Technol. 19 (2000) 515.
[33] H. Chen, A.S. Kovvali, K.K. Sirkar, Selective CO2 separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes, Ind. Eng. Chem. Res. 39 (2000) 2447.
[34] D.T. Clausi, W.J. Koros, Formation of defect-free polyimide hollow fiber membranes for gas separations, J. Membr. Sci. 167 (2000) 79.
[35] P.H.M. Feron, A.E. Jansen, CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects, Sep. Purif. Technol. 27 (2002) 231.
[36] Y. Zhang, Z. Wang, S.C. Wang, Synthesis and characteristics of novel fixed carrier membrane for CO2 separation, Chem. Lett. 4 (2002) 430.
[37] W.J. Koros, G.K. Fleming, Membrane-based gas separation, J. Membr. Sci. 83 (1993) 1.
[38] S.A. Stern, Polymers for gas separations: the next decade, J. Membr. Sci. 94 (1994) 1.
[39] T.S. Chung, S.K. Teoh, X.D. Hu, Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes, J. Membr. Sci. 133 (1997) 161.
[40] A.R. Smith, J. Klosek, A review of air separation technologies and their integration with energy conversion processes, Fuel Process. Technol. 70 (2001) 115.
[41] W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci. 175 (2000) 181.
[42] T. Griffin, S.G. Sundkvist, K. Asen, T. Bruun, Advanced zero emissions gas turbine power plant, J. Eng. Gas Turb. Power 127 (2005) 81.
[43] A.S. Kovvali, K.K. Sirkar, Carbon dioxide separation with novel solvents as liquid membranes, Ind. Eng. Chem. Res. 41 (2002) 2287.
[44] K.A. Hoff, O. Juliussen, O. Falk-Pedersen, H.F. Svendsen, Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor, Ind. Eng. Chem. Res. 43 (2004) 4908.
[45] V.Y. Dindore, D.W.F. Brilman, P.H.M. Feron, G.F. Versteeg, CO2 absorption at elevated pressures using a hollow fiber membrane contactor, J. Membr. Sci. 235 (2004) 99.
[46] R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Carbon dioxide capture by diamine-grafted SBA-15: a combined fourier transform infrared and mass spectrometry study, Ind. Eng. Chem. Res. 44 (2005) 3702.
[47] R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2, Ind. Eng. Chem. Res. 44 (2005) 8007.
[48] R. Wang, H.Y. Zhang, P.H.M. Feron, D.T. Liang, Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, Sep. Purif. Technol. 46 (2005) 33.
[49] P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F. Versteeg, Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber, J. Membr. Sci. 213 (2003) 231.
[50] H. Kreulen, C.A. Smolders, G.F. Versteeg, W.P.M. Van Swaaij, Determination of mass transfer rates in wetted and non-wetted microporous membranes, Chem. Eng. Sci. 48 (1993) 2093.
[51] R. Wang, D.F. Li, C. Zhou, M. Liu, D.T. Liang, Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors, J. Membr. Sci. 229 (2004) 147.
[52] N. Ghasem, M. Al-Marzouqi, A. Duaidar, Effect of quenching temperature on the performance of poly(vinylidene fluoride) microporous hollow fiber membranes fabricated via thermally induced phase separation technique on the removal of CO2 from CO2-gas mixture, Int. J. Greenh. Gas Con. 5 (2011) 1550.
[53] P. Luis, B.V. der Bruggen, T.V. Gerven, Non-dispersive absorption for CO2 capture: from the laboratory to industry, J. Chem. Technol. Biotechnol. 86 (2011) 769.
[54] Y.S. Kim, S.M. Yang, Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents, Sep. Purif. Technol. 21 (2000) 101.
[55] V.Y. Dindore, D.W.F. Brilman, F.H. Geuzebroek, G.F. Versteeg, Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors, Sep. Purif. Technol. 40 (2004) 133.
[56] N. Ghasem, M. Al-Marzouqi, N. Abdul Rahim, Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes: properties and performance used as gas–liquid membrane contactor for CO2 absorption, Sep. Purif. Technol. 99 (2012) 91.
[57] N. Ghasem, M. Al-Marzouqi, L. Zhu, Preparation and properties of polyethersulfone hollow fiber membranes
with o-xylene as an additive used in membrane contactors for CO2 absorption, Sep. Purif. Technol. 92 (2012) 1.
[58] S. Atchariyawut, R. Jiraratananon, R. Wang, Separation of CO2 from CH4 by using gas–liquid membrane contacting process, J. Membr. Sci. 304 (2007) 163.
[59] M. Hedayat, M. Soltanieh, S.A. Mousavi, Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines, J. Membr. Sci. 377 (2011) 191.
[60] J. Happel, Viscous flow relative to arrays of cylinders, AIChE J. 5 (1959) 174.
[61] A. Dashti, M. Asghari, Recent progresses in ceramic hollow-fiber membranes, ChemBioEng Rev. 2 (2015) 54.
[62] R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review, Appl. Energ. 161 (2016) 225.
[63] H. Herzog, An introduction to CO2 separation and capture technologies, Massachusetts Institute of Technology Energy Laboratory, 1999.
[64] Y.F. Lin, C.H. Chen, K.L. Tung, T.Y. Wei, S.Y. Lu, K.S. Chang, Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements, ChemSusChem 6 (2013) 437.
[65] M.H. Al-Marzouqi, M.H. El-Naas, S.A.M. Marzouk, M.A. Al-Zarooni, N. Abdullatif, R. Faiz, Modeling of CO2 absorption in membrane contactors, Sep. Purif. Technol. 59 (2008) 286.
[66] N. Ghasem, M. Al-Marzouqi, N. Abdul Rahim, Modeling of CO2 absorption in a membrane contactor considering solvent evaporation, Sep. Purif. Technol. 110 (2013) 1.
[67] F. Bougie, M.C. Iliuta, Sterically hindered amine-based absorbents for the removal of CO2 from gas streams, J. Chem. Eng. Data 57 (2012) 635.
[68] F. Camacho, S. Sanchez, R. Pacheco, A. Sanchez, M.D. La Rubia, Thermal effects of CO2 absorption in aqueous solutions of 2-amino-2-methyl-1-propanol, AIChE J. 51 (2005) 2769.
[69] M. Afkhamipour, M. Mofarahi, Sensitivity analysis of the rate-based CO2 absorber model using amine solutions (MEA, MDEA and AMP) in packed columns, Int. J. Greenh. Gas Con. 25 (2014) 9.
[70] W.C. Sun, C.B. Yong, M.H. Li, Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine, Chem. Eng. Sci. 60 (2005) 503.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49381-
dc.description.abstract本研究利用二維質量傳遞模型來模擬中空纖維膜接觸器內二氧化碳之輸送行為,其中混合 PZ 與 AMP 作為化學吸收劑使用,模型適用於非潤濕條件,且考慮到徑向和軸向擴散,對流,化學反應。實驗結果中 AMP 與 PZ 混合溶液的二氧化碳化學吸收通量去與模擬結果做擬合驗證,接著改變其他參數進行模擬預測,其模擬結果總結如下。
與二氧化碳吸收通量的實驗結果相比,物理模型的驗證是有良好的一致性。沿著無因次化的中空纖維薄膜膜組件長度來看,氣體流速、液體流速、化學吸收劑濃度和管長的不同,將使得二氧化碳移除率也有所改變,液體流速、化學吸收劑濃度和管長的增加,會使得二氧化碳吸收增加,另外一方面,氣體流速增加則會降低二氧化碳吸收。
所提出的數學模型可以從中空纖維薄膜接觸器混合氣體內預測二氧化碳捕捉之結果,且透過模擬的方式,從而減少實驗的成本。
zh_TW
dc.description.abstractIn this study, a two-dimensional mass transfer model is developed to simulate the carbon dioxide transport for the hollow fiber membrane contactor in which mixed piperazine (PZ) and 2-amino-2-methyl-1-propanol (AMP) as the chemical absorbent is used. The model is developed for non-wetted conditions, taking into account radial and axial diffusion, convection, and chemical reaction in the membrane contactor. The simulation results for chemical absorption of carbon dioxide in AMP/PZ blended solution are summarized as below.
The validation of the physical model compared with the experimental result of carbon dioxide absorption flux is good agreement. The carbon dioxide concentration along the length of the module with respect to different values of gas flow rates, liquid flow rates, chemical absorbent concentration, and module length can be taken into account. Carbon dioxide absorption from the gas mixture increases while the liquid flow rates, chemical absorbent concentration, and module length going up. On the other hand, increase of gas flow rates reduces removal of carbon dioxide. The proposed mathematical model can predict carbon dioxide capture from gas mixtures in HFMCs. Through computer simulation, thereby reducing the cost of experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:26:06Z (GMT). No. of bitstreams: 1
ntu-105-R02524020-1.pdf: 4892588 bytes, checksum: c7cae10a36dd403b93b6909ce776317f (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgments I
中文摘要 II
Abstract III
Table of Contents V
List of Figure VII
List of Table IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 8
2-1 Ceramic hollow fiber membrane 8
2-1-1 Preparation of ceramic hollow fiber membrane 9
2-1-2 Advantages of ceramic hollow fiber membrane 19
2-2 Carbon dioxide capture 20
2-2-1 Cryogenic separation 21
2-2-2 Physical adsorption 22
2-2-3 Physical absorption 24
2-2-4 Chemical absorption 25
2-2-5 Membrane separation 28
Chapter 3 Experiments 38
3-1 Experimental materials and apparatus 38
3-1-1 Materials
 38
3-1-2 Equipment 40
3-2 Fabrication of hydrophobic hollow fiber membranes 44
Chapter 4 Results and discussion 56
4-1 Physical model 56
4-1-1 Shell side 56
4-1-2 Membrane side 60
4-1-3 Tube side 60
4-2 Model validation for carbon dioxide absorption flux 61
4-3 Carbon dioxide concentration profile 63
4-4 The effect of liquid and gas flow rates 66
4-5 The effect of chemical absorbent concentration 68
4-6 The effect of module length 71
Chapter 5 Conclusions 75
References 77
dc.language.isoen
dc.subject模擬zh_TW
dc.subject二氧化碳捕捉zh_TW
dc.subject中空纖維薄膜zh_TW
dc.subjectcarbon dioxide captureen
dc.subjectAMP/PZen
dc.subjectsimulationen
dc.subjecthollow fiber membranesen
dc.title疏水陶瓷中空纖維薄膜於混合氣體中二氧化碳捕捉之模擬與實驗研究zh_TW
dc.titleSimulation and Experimental Studies of CO2 Capture from Gaseous-mixture Using Hydrophobic Ceramic Hollow Fiber Membranesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊清榮(Ching-Jung Chuang),黃國楨(Kuo-Jen Hwang)
dc.subject.keyword二氧化碳捕捉,中空纖維薄膜,模擬,zh_TW
dc.subject.keywordcarbon dioxide capture,hollow fiber membranes,AMP/PZ,simulation,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201603055
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved