請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49350
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬鴻文(Hwong-Wen Ma) | |
dc.contributor.author | Ming-Yu Hsiao | en |
dc.contributor.author | 蕭明瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T11:24:48Z | - |
dc.date.available | 2019-08-30 | |
dc.date.copyright | 2016-08-30 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | Bicket, M., Guilcher, S., Hestin, M., Hudson, C., Razzini, P., Tan, A., ... & Watkins, E. (2014). Scoping study to identify potential circular economy actions, priority sectors, material flows and value chains.
Butlin, J. (1989). Our common future. By World commission on environment and development.(London, Oxford University Press, 1987, pp. 383£ 5.95.). CIWMB (The California Integrated Waste Management Board). (2005). Recycling: Good for the Environment, Good for the economy. De Bruin, K., Dellink, R., & Agrawala, S. (2009). Economic Aspects of Adaptation to Climate Change. Dunlap, R. E., & Jorgenson, A. K. (2012). Environmental problems. The Wiley-Blackwell Encyclopedia of Globalization. EPD (Environmental product declarations). (2008). Supporting annexes for an international EPD system for environmental product declarations. EMF (Ellen MacArthur Foundation). (2015). Growth within: A Circular Economy Vision for a Competitive Europe. Geels, F. W., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research policy, 36(3), 399-417. Geels, F. W., & Schot, J. (2010). The dynamics of transitions: a socio-technical perspective. Transitions to sustainable development: New directions in the study of long term transformative change, 11-104. Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., ... & Noble, I. (2013). Policy: Sustainable development goals for people and planet. Nature, 495(7441), 305-307. Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., ... & Sala, S. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697. ISO, ISO14040. (2006). 14040: Environmental management–life cycle assessment–principles and framework. London: British Standards Institution. Leontief, W. (1970). Environmental repercussions and the economic structure: an input-output approach. The review of economics and statistics, 262-271. Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, 41(6), 955-967. Mutel, C. L., & Hellweg, S. (2009). Regionalized life cycle assessment: computational methodology and application to inventory databases.Environmental science & technology, 43(15), 5797-5803. Nakamura, S., & Kondo, Y. (2002a). Input‐Output Analysis of Waste Management. Journal of Industrial Ecology, 6(1), 39-63. Nakamura, S., & Kondo, Y. (2002b). Recycling, landfill consumption, and CO2 emission: analysis by waste input–output model. Journal of Material Cycles and Waste Management, 4(1), 2-11. Nakamura, S., & Kondo, Y. (2009). Waste input-output analysis: concepts and application to industrial ecology (Vol. 26). Springer Science & Business Media. Nicholson, A. L., Olivetti, E. A., Gregory, J. R., Field, F. R., & Kirchain, R. E. (2009, May). End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions. In 2009 IEEE International Symposium on Sustainable Systems and Technology (pp. 1-6). IEEE. NJWW (New Jersey WasteWise Business Network). (2013). The Economic Benefits of Recycling and Waste Reduction – WasteWise Case Studies from the Private and Public Sectors. NSW DECC (Department of Environment, Climate Change and Water NSW). (2010). Environmental benefits of recycling. OECD. (2011). Policy Principles for Sustainable Materials Management. Paris. Ofstad, S. (1994). Symposium: Sustainable Consumption. Ministry of the Environment, Oslo. Ortiz, R. A., & Markandya, A. (2009). Integrated impact assessment models of climate change with an emphasis on damage functions: a Literature Review.Bilbao: Spain. Patt, A. G., van Vuuren, D. P., Berkhout, F., Aaheim, A., Hof, A. F., Isaac, M., & Mechler, R. (2010). Adaptation in integrated assessment modeling: where do we stand?. Climatic Change, 99(3-4), 383-402. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., ... & Nykvist, B. (2009). A safe operating space for humanity. Nature,461(7263), 472-475. Shen, L., Worrell, E., & Patel, M. K. (2010). Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resources, conservation and recycling,55(1), 34-52. Smith, A., Stirling, A., & Berkhout, F. (2005). The governance of sustainable socio-technical transitions. Research policy, 34(10), 1491-1510. Stanton, E. A., Ackerman, F., & Kartha, S. (2009). Inside the integrated assessment models: Four issues in climate economics. Climate and Development, 1(2), 166-184. Steel Can Recycling Information Bureau (SCRIB). (2010). Steel Recycling Institute. (2013). Steel Recycling Rates. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... & Folke, C. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. Stehfest, E., van Vuuren, D., Bouwman, L., & Kram, T. (2014). Integrated assessment of global environmental change with IMAGE 3.0: Model description and policy applications. Netherlands Environmental Assessment Agency (PBL). Takase, K., Kondo, Y., & Washizu, A. (2005). An Analysis of Sustainable Consumption by the Waste Input‐Output Model. Journal of Industrial Ecology,9(1‐2), 201-219. Tol, R. S., & Fankhauser, S. (1998). On the representation of impact in integrated assessment models of climate change. Environmental Modeling & Assessment, 3(1-2), 63-74. UNCSD. (1998). Consumer Protection: Guidelines for Sustainable Consumption: Report of the Secretary-General. United Nations Commission on Sustainable Development. UNEP. (2010). Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials. UNEP. (2014). Decoupling 2: technologies, opportunities and policy options. WSA. (2009). World Steel in Figures, 2009. WSA. (2010). The three Rs of sustainable steel. World Steel Association: Brussels/Beijing. World Steel Association. (2008). World Steel in Figures, 2nd Edition. World Steel Association. (2011). Life Cycle Assessment Methodology report. 中技社。2015。資源循環經濟與產業發展。 王俊傑。2008。台灣產業環境衝擊關聯分析與永續消費型態探討。臺灣大學碩士論文,台北市。 王塗發。1986。投入產出分析及其應用-台灣地區實證研究。台灣銀行季刋, 第三十七卷一期。 台灣鋼聯股份有限公司。2008。台灣區電弧爐煉鋼業廢棄物共同處理體系設立變更計畫環境影響說明書。行政院環保署。 行政院主計處。2006。產業關聯表編製報告。 行政院環保署。2002。廢棄物再利用模式與資源化管理制度建置計畫。 行政院環保署。2009。廢機動車輛回收清除處理體系暨源頭減量分析規劃專案工作計畫。 行政院環保署。2011。資源循環政策規劃。 何存正。2012。台灣鋼鐵。台灣:台灣鋼鐵同業公會。 李尚展。2013。結合投入產出及生命週期評估分析台灣鋼鐵業環境與經濟之衝擊。國立成功大學碩士論文。台南市。 李高朝。2005 。實用產業關聯分析精義。 沈宗桓。2002。工業部門能源消費與CO2、SOx及NOx排放之特性分析。國立成功大學碩士論文。台南市。 林欣助。2007。台灣廢棄物管理之研究-WIO模型之應用。國立台北大學碩士論文。台北市。 張益壽。2008。廢棄物回收再利用與二氧化碳排放之關聯分析_ 廢棄物投入產出模型的應用。中央大學環境工程研究所碩士在職專班學位論文,1-139。 陳建仁、林偉凱、陳佳安、張聖傑。2014。2014鋼鐵年鑑。財團法人金屬工業研究發展中心。台灣,台北市。 陳建任、黃德晉、林偉凱、陳仲宜、王志民、葉哲政、陸蓉菁。2008。2008鋼鐵年鑑。財團法人金屬工業研究發展中心。台灣,台北市。 經濟部工業局。2001。電弧爐煉鋼還原渣資源化應用技術手冊。 經濟部工業局。2012。鋼鐵工業政策評估說明書。 經濟部工業局。2014。資源循環產業推動及審查計畫報告。 經濟部統計處。2016。製造業產值. Retrieved from http://dmz21.moea.gov.tw/GA/#/p03 詹尚文。2009。國內工業廢棄物處理成本效益分析探討-以印刷電路板業含銅污泥為例。臺北大學自然資訊與環境管理研究所碩士論文。 福島康裕。2007。亞洲國家內廢鋼和原鋼的物流流向之整合管理策略。 趙家緯。2013。型塑公共政策生態理性—整合性環境評估模型之發展與應用。國立臺灣大學博士論文,台北市。 蕭宇辰。2014。台灣金屬產業整合性環境評估。臺灣大學環境工程學研究所學位論文, 1-91。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49350 | - |
dc.description.abstract | 從1970年代開始永續發展做為一人類發展的概念開始席捲全球,日前Griggs發表了永續的新定義,其中認為永續發展必須要考慮地球系統的運行以及人類活動的平衡。另一方面,瑞典斯德哥爾摩韌度研究中心Rockstrom 等人亦發表了基於韌度(resilience)理論以及環境負載力的九大地球限度(planetary boundaries)並指出許多限度已超過環境負載力,因此永續轉型是必要的。
永續物質管理(SMM)和永續生產與消費(SCP)分別為兩個轉型概念。兩者之轉型目標皆希望降低環境負荷或衝擊、減少對於自然資源的消耗,並且不同程度地將經濟成長納入考量。再深入檢視其轉型策略,兩者皆是以生命週期的角度貫穿,並對於產品各階段的生命週期有對應的轉型策略,其中原料取得階段,策略包含提高資源回收率技術等,其短期具體做法是檢視國內衝擊較大之產業,了解資源供需情況,並提出廢棄物/資源進出口管理政策建議;舊品即廢品再利用/處置階段,可藉由回收再利用,發展我國短缺資源之再利用技術達成,從這兩方面亦可發現資源循環在永續發展中之地位。因此,本研究欲針對台灣廢鋼資源循環,分別以資源循環以及進出口政策做為兩轉型路徑,探究為了滿足消費需求,台灣廢鋼鐵之資源循環對於環境之影響。 研究方法透過建立台灣廢鋼鐵投入產出(WIO)、合併台灣整合性環境評估模式(TWIEA),對於台灣鋼鐵資源循環做一以廢棄物端出發的生命週期評估,檢視台灣鋼鐵資源循環下所造成的環境衝擊。結果從兩方面討論之,一為台灣廢鋼鐵於不同回收率的環境衝擊,其中發現台灣為了滿足鋼鐵需求,故在實行資源循環、提高回收率時,從國外進口原物料,反而使得全球環境衝擊增加,出現環境債留他國的問題,也發現實行資源循環時,產生環境衝擊的間接排放產業並非一般所認為排放貢獻量高之熱點產業;另一為模擬台灣鋼鐵政策之下實行資源循環所造成的環境衝擊,若將台灣粗鋼需求成長率視為經濟成長率,則台灣在經濟成長的同時,可以使各衝擊指標皆「相對脫鈎」。最後,資源循環和進出口政策雖皆為轉型路徑,對於環境衝擊的影響程度卻大為不同,管理者於決策時應同時考慮多方轉型路徑,選擇較為有效之面向進行,以達永續發展之最終目的。 | zh_TW |
dc.description.abstract | Human activities have caused environmental damage which affects not just the environment but also the society and the economy. There are several innitiatives that address environmental degradation and implement the concept of sustainable development. Two of the important initiatives are Sustainable Materials Management (SMM) and Sustainable Consumption and Production(SCP). Resource recycling can reduce the use of raw materials, and is considered to be more sustainable. However, it is important to take the whole economic system into consideration while discussing recycling.
The main objective of this research is by investigating resource recycling sector with Extended Input-Output analysis, which includes all production sectors, to discuss its effect on the environment in a more comprehensive way. The iron and steel industry in Taiwan serves as a case study. The analytical method includes two models, Taiwan Integrated Environmental Assessment Model (TWIEA) and Waste Input-Output model (WIO). To improve the limitation of IO, which dose not consider the interaction between the flow of products and wastes properly, the WIO model can account for waste generation in each sector more precisely and also cover the cost of each waste treatment sector. Using the recycling rate in Taiwan as a variable, this research investigates the recycling rate of iron and steel industry in Taiwan to analyze the environmental impacts in the categories of human health, eco-quality, climate change, resources, and water resources. The first part of the result shows that recycling is not always environmental friendly in order to meet the needs of an economic system but may cause environmental debts. When the recycling rate of waste iron increases in Taiwan, the impact of global climate change decreases; but the impacts of global human health, eco-quality, resources and water resources increase. The main indirect emissions which may impact ecosystems are from mining and mineral manufacturing sectors that emit sulfur oxides and nitrogen oxides in foreign countries. The main indirect emissions which lead to lack of water resources are from middle-east’s crude oil exploration. The second part of the result evaluates the environmental impacts while conducting resource recycling based on the international trade data. The results show that while the crude steel consumption grows, the environmental impacts’ increase rate is lower and thus there is “relative decoupling”. The study indicates that international trading is a more effective way to decrease the impacts. Though both recycling and international trading are transition pathways which is the key to more sustainable world, there are great differences between them. The decision makers should implement a policy with a more effective transition pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:24:48Z (GMT). No. of bitstreams: 1 ntu-105-R03541203-1.pdf: 3541596 bytes, checksum: d38103e916e898bdd3813d9d8e22a609 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 第ㄧ章 緒論 1
1.1 研究背景與動機 1 1.2 研究目標 3 1.3 研究架構 4 第二章 文獻回顧 6 2.1資源循環與永續的關係 6 2.1.1 永續發展目標 6 2.1.2 永續轉型路徑 8 2.1.3 資源循環與永續轉型之關係 10 2.2資源循環之重要性 18 2.2.1資源循環與環境衝擊的關係 18 2.2.2 資源循環與經濟發展的關係 20 2.3環境經濟整合性評估模型 24 2.3.1整合性評估模型之現況 24 2.3.2混合型投入產出生命週期評估 27 2.3.3 廢棄物投入產出 31 2.4 鋼鐵產業的資源循環 34 2.4.1鋼鐵的回收 34 2.4.2 鋼鐵的環境影響 36 2.4.4 台灣鋼鐵產業之特性 41 2.4.5台灣鋼鐵的產業結構 42 第三章 研究方法 49 3.1研究流程 50 3.2 廢鋼之廢棄物投入產出模型 55 3.2.1 投入產出分析 55 3.2.2 廢棄物投入產出分析 56 3.2.3 廢棄鋼鐵投入產出模型建置 57 3.3 台灣整合性環境評估模型 74 3.3.1台灣整合性環境評估模型方法簡介 74 3.3.2 TWIEA回收模型建置 79 第四章 結果與討論 84 4.1台灣廢鐵循環廢棄物投入產出 84 4.2鋼鐵回收率之環境衝擊分析 85 85 4.2.1 鋼鐵回收率之敏感度分析 86 4.2.2 不同最終需求之產業 96 4.2.3 驅動不同衝擊的產業貢獻比率分析 97 4.2.4 討論 108 4.3 鋼鐵政策情境設定 110 4.3.1鋼鐵政策於不同回收率之環境衝擊變化量 112 4.3.2鋼鐵政策之經濟成長和環境衝擊關係 115 4.3.3 討論 118 第五章 結論與建議 119 5.1 結論 119 5.2建議 121 第六章 參考文獻 123 附錄、主計處52部門與68部門對照表 128 | |
dc.language.iso | zh-TW | |
dc.title | 台灣廢鋼資源循環的環境影響 | zh_TW |
dc.title | Environmental Impact of Scrap Steel Resource Recycling in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李公哲,趙家緯 | |
dc.subject.keyword | 永續轉型,資源循環,廢棄物投入產出(WIO),台灣整合性環境評估模式(TWIEA),投入產出生命週期評估,廢鋼, | zh_TW |
dc.subject.keyword | sustainable transition,resource recycling,waste input-output(WIO),Taiwan Integrated Environmental Assessment Model (TWIEA),IO-LCA(input-output life-cycle assessment),scrap steel, | en |
dc.relation.page | 129 | |
dc.identifier.doi | 10.6342/NTU201602637 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。