Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49346
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鄭克聲(Ke-Sheng Cheng) | |
dc.contributor.author | Yu-Ting Fan | en |
dc.contributor.author | 范毓庭 | zh_TW |
dc.date.accessioned | 2021-06-15T11:24:37Z | - |
dc.date.available | 2019-08-30 | |
dc.date.copyright | 2016-08-30 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | Cheng, K.S., Liou, J.J., Su, Y.F., and Chiang, J.L. 2010. Gamma random field simulation by a covariance matrix transformation method. Stochastic Environmental Research and Risk Assessment, vol. 25, no. 2, pp. 235-251.
Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environment, vol. 37, no. 1, pp. 35-46. Cheng, K.S., Chiang, J.L. and Hsu, C.W. 2007. Simulation of probability distributions commonly used in hydrologic frequency analysis. Hydrological Process, vol. 21, no.1, pp. 51-60. Cheng, K.S., Hou, J.C., Liou, J.J., Wu, Y.C. and Chiang, J.L. 2011. Stochastic simulation of bivariate gamma distribution: a frequency-factor based approach. Stochastic Environmental Research and Risk Assessment, vol. 25, no. 2, pp. 107-122. Chow, V.T. 1951. A general formula for hydrologic frequency analysis. Transactions, American Geophysical Union, vol. 32, no. 2, pp. 231–237. Emery X. 2005. Substitution random fields with Gaussian and Gamma distributions: Theory and application to a pollution data set. Mathematical Geosciences, vol. 40, no. 1, pp. 83-99. Kite, G.W.. 1988. Frequency and risk analysis in hydrology. Water Resources Publications, Fort Colins. Li, J., Li, J., Menzelb, W. P., Zhang, W., Sun, F., Schmitb, T. J., Gurka, J. J., & Weisz, E. 2004. Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. Journal of Applied Meteorology and Climatology, vol. 43, no. 11, pp. 1619-1634. Nieto-Barajas, L.E. 2008. A Markov gamma random field for modelling disease mapping data. Statistical Modelling, vol. 8, no. 1, pp. 97-114. Raymond, W.H. and Aune, R.M. 2003. Conservation of moisture in a hybrid Kuo-type cumulus parameterization. Monthly Weather Review, vol. 131, no. 5, pp. 771-779. Sheng, J., Zhang, H. and Qu, H. 2016. Using MOD09 data to produce a natural-color image from the blue-lacked multispectral remote sensing data. Journal of remote sensing & GIS, vol. 5, no. 1. Schowengerdt, R.A. 2007. Remote sensing: Models and Methods for image processing (Third Edition). Academic Press, Inc. Stehman, S.V. 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing Environment, vol. 62, no. 1, pp. 77-89. 黃瑋芳,2003,淡江大學水資源及環境工程學研究所碩士論文,「時序分離理論及其應用於合成資料之繁衍」。 潘國樑,2009,遙測學大綱(第二版),科技圖書股份有限公司。 黃恩興,2010,遙感影像分類結果的不確定性研究,中國農學通報,26(5),第322-325頁。 黃楓台,2014,福衛五號非同步取像及其影像模擬,航測及遙測學刊,第十八卷,第1期,第59-66頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49346 | - |
dc.description.abstract | 多光譜衛星遙測影像已被廣泛應用於地表覆蓋分類的領域,其中監督式分類法是以選取訓練樣本(training data)作為特徵值分類之依據,以混淆矩陣(confusion matrix)計算而得的準確度(accuracy)評估分類結果。然而地表反射能力會隨著地表狀態的不同而改變,因此分類結果也會隨之改變,但利用有限的衛星影像無法表現其不確定性。此外,使用者準確度會受訓練樣本的類別比例影響,造成訓練樣本的分類準確度無法推估全影像的分類準確度。故本研究提出多光譜衛星遙測影像之序率模擬的方法,以多幅具有相同特性之模擬影像對分類結果之準確度進行探討。本研究採用日本ALOS衛星於台北市及其近郊拍攝所得之衛星影像作為原始影像。將多光譜衛星遙測影像視為隨機向量場域,各像元之灰階值代表特徵向量,故特徵向量具有來自不同波段間的特徵相關性,同時也具有因地物連續性造成的空間相關性。因此模擬影像時,首先利用非監督式分類法,將原始影像中具有相似光譜特性之特徵向量分群,不同群的特徵向量可視為來自不同參數之多變量分佈的樣本,並以多變量分佈之相關係數維持原始影像之特徵相關性。由於分群後的特徵向量之邊際分佈並非常態分佈,利用共變異數矩陣轉換演算法,將多變量常態分佈模擬之樣本轉換為相對應分佈之樣本。得到模擬樣本後,利用主成分分析之第一主成分的排序值所成之級值序列(rank series),作為維持空間相關之依據,使模擬影像不喪失原始影像之地表樣貌。最後,以模擬影像評估分類結果之不確定性以及訓練像元之代表性。 | zh_TW |
dc.description.abstract | Multispectral remote sensing images are widely used in many environmental monitoring applications including landuse/landcover (LULC) classification and change detections. Remote sensing LULC classification can be conducted using various supervised or unsupervised classification techniques. Accuracies of classification results often are evaluated using the confusion matrix (or error matrix) derived from a set of training data which consists of training pixels of individual LULC classes. There are also applications that assessed classification accuracies based on the error matrix derived from an independent reference dataset. However, although widely accepted for classification accuracy assessment, uncertainties of the error matrix itself due to selection of training pixels (sampling uncertainties) have received little attention. In addition, the premise that training data are representative of the whole study area is not always valid. In this study, we aim to tackle both problems by a stochastic multispectral images simulation approach (SMISA). The SMISA considers multispectral images as a multivariate random field, or a random-vector field. Individual univariate random fields may be non-Gaussian and a covariance transformation algorithm was applied for transforming a non-Gaussian random-vector field to a corresponding Gaussian random-vector field. Cluster analysis was implemented to group all pixels into several clusters. All pixels of the same cluster are considered as a realization of a random-vector field. Principal component transformation was then applied to the Gaussian random-vector field and the resultant major principal components were evaluated. The major principal components were simulated independently and then scores of Gaussian random-vector were obtained through inversion of the principal components. By using rank series of the original multispectral remote sensing images, we were able to stochastically simulate a large number of multispectral images which preserve all the statistical properties of the original set of multispectral images. The proposed rank series based approach has been successfully tested using an AR(2) time series model. By decomposing a given AR(2) model into a rank series and an independent Gaussian distribution, we were able to simulate a large number of realizations which were identified are AR(2) time series with average parameters nearly identical to the parameters of the given AR(2) model. Finally, simulated images were used for assessing uncertainties of the error matrix. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:24:37Z (GMT). No. of bitstreams: 1 ntu-105-R03h41003-1.pdf: 5473967 bytes, checksum: 62a3a8e77cc34653660e798f5262f9fa (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 1
Abstract 2 目錄 4 圖目錄 6 表目錄 8 第一章 前言 9 1.1 研究動機與目的 9 1.2 研究流程介紹 10 第二章 文獻回顧 12 2.1 衛星遙測影像模擬 12 2.2 隨機變域模擬 14 2.3 遙測影像分類不確定性之評估 14 第三章 研究區域與影像資料 16 3.1 研究區域 16 3.2 多光譜衛星遙測影像資料 16 第四章 多光譜衛星遙測影像模擬 21 4.1 灰階値分群 21 4.1.1 K-means分群法 21 4.2 灰階値模擬 22 4.2.1 皮爾遜第三型分布 22 4.2.2 多變量常態分配 23 4.2.3 雙變數伽瑪分佈模擬 24 4.3 級值序列 26 4.3.1 時間序列的級值序列 26 4.3.2 利用級值序列形成模擬影像 27 第五章 影像模擬過程與結果之討論 29 5.1 K-means分群結果 29 5.2 皮爾遜第三型分佈模擬結果 39 5.3 以級值序列模擬時間序列 47 5.4 模擬影像 50 第六章 模擬影像之應用 60 6.1 訓練樣本各類別比例代表之意義 60 6.2 訓練樣本大小選擇 62 6.3 訓練樣本符合比例之驗證 62 第七章 結論 76 參考文獻 78 | |
dc.language.iso | zh-TW | |
dc.title | 多光譜衛星遙測影像之序率模擬方法及應用 | zh_TW |
dc.title | A Stochastic Multispectral Images Simulation Approach and Its Applications in Remote Sensing | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉小蓁(Hsiaw-Chan Yeh),周呈霙(Cheng-Ying Chou),葉惠中(Hui-Chung Yeh) | |
dc.subject.keyword | 衛星遙測,隨機場域,序率模擬,不確定性,地表覆蓋分類,混淆矩陣, | zh_TW |
dc.subject.keyword | Uncertainties,Stochastic Simulation,LULC Classification,Confusion Matrix,Random Vector Field,Remote Sensing, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU201602928 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-18 | |
dc.contributor.author-college | 共同教育中心 | zh_TW |
dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 統計碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf Restricted Access | 5.35 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.