Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49326
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌
dc.contributor.authorHsin-Ni Yangen
dc.contributor.author楊欣霓zh_TW
dc.date.accessioned2021-06-15T11:23:47Z-
dc.date.available2016-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citation1. Shchipunov, Y.A., Lecithin organogel - A micellar system with unique properties. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 183: p. 541-554.
2. McKee, M.G., et al., Phospholipid nonwoven electrospun membranes. Science, 2006. 311(5759): p. 353-355.
3. Tung, S.H., Y.E. Huang, and S.R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids. Journal of the American Chemical Society, 2006. 128(17): p. 5751-5756.
4. Israelachvili, J.N., Intermolecular and surface forces. 3rd ed. 2011, Burlington, MA: Academic Press. xxx, 674 p.
5. Ezrahi, S., E. Tuval, and A. Aserin, Properties, main applications and perspectives of worm micelles. Advances in Colloid and Interface Science, 2006. 128: p. 77-102.
6. Tung, S.H., Y.E. Huang, and S.R. Raghavan, Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir, 2007. 23(2): p. 372-376.
7. Njauw, C.W., et al., Molecular Interactions between Lecithin and Bile Salts/Acids in Oils and Their Effects on Reverse Micellization. Langmuir, 2013. 29(12): p. 3879-3888.
8. Lee, H.Y., et al., Can Simple Salts Influence Self-Assembly in Oil? Multivalent Cations as Efficient Gelators of Lecithin Organosols. Langmuir, 2010. 26(17): p.13831-13838.
9. Cheng, C.Y., T.Y. Wang, and S.H. Tung, Biological Hydrogels Formed by Swollen Multilamellar Liposomes. Langmuir, 2015. 31(49): p. 13312-13320.
10. Cheng, C.Y., et al., Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir, 2014. 30(34): p. 10221-10230.
11. Coello, A., et al., Aggregation behavior of bile salts in aqueous solution. Journal of Pharmaceutical Sciences, 1996. 85(1): p. 9-15.
12. Tayi, A.S., et al., Electrospinning Bioactive Supramolecular Polymers from Water. Biomacromolecules, 2014. 15(4): p. 1323-1327.
13. Ahn, Y., et al., Preparation of beta-cyclodextrin fiber using electrospinning. Rsc Advances, 2013. 3(35): p. 14983-14987.
14. Celebioglu, A. and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: Electrospun nanofibers from native cyclodextrins. Journal of Colloid and Interface Science, 2013. 404: p. 1-7.
15. Celebioglu, A. and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale, 2012. 4(2): p. 621-631.
16. Celebioglu, A. and T. Uyar, Electrospinning of Polymer-free Nanofibers from Cyclodextrin Inclusion Complexes. Langmuir, 2011. 27(10): p. 6218-6226.
17. Celebioglu, A. and T. Uyar, Electrospun gamma-cyclodextrin (gamma-CD) nanofibers for the entrapment of volatile organic compounds. Rsc Advances, 2013. 3(45): p. 22891-22895.
18. Cui, H., et al., Self-Assembly of Giant Peptide Nanobelts. Nano Letters, 2009. 9(3): p. 945-951.
19. Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
20. Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, 2006. 12(5): p. 1197-1211.
21. Greiner, A. and J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition, 2007. 46(30): p. 5670-5703.
22. Sill, T.J. and H.A. von Recum, Electro spinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
23. Supaphol, P., et al., Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. Biomedical Applications of Polymeric Nanofibers, 2012. 246: p. 213-239.
24. Rieger, K.A., N.P. Birch, and J.D. Schiffman, Designing electrospun nanofiber mats to promote wound healing - a review. Journal of Materials Chemistry B, 2013. 1(36): p. 4531-4541.
25. Goldstein, J., Scanning electron microscopy and x-ray microanalysis. 3rd ed. 2003, New York: Kluwer Academic/Plenum Publishers. xix, 689 p.
26. Spink, C.H., Differential scanning Calorimetry. Biophysical Tools for Biologists:Vol 1 in Vitro Techniques, 2008. 84: p. 115-141.
27. Shrestha, L.K., et al., Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir, 2011. 27(6): p. 2340-2348.
28. Pedersen, J.S., Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science, 1997. 70: p. 171-210.
29. Wypych, G., Handbook of Solvents.
30. Vogel, A.I., B.S. Furniss, and A.I. Vogel, Vogel's Textbook of practical organic chemistry. 5th ed. 1989, London New York: Longman Scientific & Technical ; Wiley. xxviii, 1514 p.
31. edivec, V.c. and J. Flek, Handbook of analysis of organic solvents. Ellis Horwood series in analytical chemistry. 1976, Chichester, Eng. New York: E. Horwood ; Halsted Press. 455 p.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49326-
dc.description.abstract電紡抽絲為製備連續性超細纖維的一種多樣化方法。電紡纖維的優點十分多,如:具有高表面積對體積比、可調整的孔隙度和易於表面功能化的特點,而電紡纖維普遍是從含有糾纏的高分子鏈之高分子溶液中製備而來。在這篇論文中,我們不以高分子來製備電紡纖維,我們使用電紡抽絲技術製備由卵磷脂與膽鹽組成的纖維,而卵磷脂和膽鹽皆為自然的小分子生物介面活性劑。卵磷脂為構成細胞膜的主要成分,膽鹽則是肝所合成的面向型雙親性小分子並且參與生理消化作用。
一般來說,小分子無法在溶液中展現出糾纏的特性,然而先前的研究已發現卵磷脂和膽鹽能在特定莫爾比例下於低極性有機溶劑中形成蟲狀微胞。類似於高分子鏈,蟲狀微胞為柔軟的鏈且長度夠長可互相糾纏,致使溶液有黏彈性,給予小分子能被電紡抽絲的可能性。藉由小分子自組裝,我們成功將卵磷脂與膽鹽在四氫呋喃與環己烷和四氫呋喃混合之共溶劑中形成的蟲狀微胞溶液,電紡出卵磷脂與膽鹽混合的纖維。我們有系統地研究所需的溶劑性質與溶液的濃度、黏度、導電度,並優化電紡參數。卵磷脂與膽鹽混合的纖維是完全生物可相容的,十分有潛力應用於生物應用方面。
zh_TW
dc.description.abstractThe electrospinning technique is a versatile method for the fabrication of continuous ultrafine fibers. There are many advantages of electrospun fibers, such as high surface area to volume ratio, adjustable porosity, and varying functionality on fiber surface. Electrospun fibers are generally fabricated from polymer solutions with entangled polymer chains. In this work, instead of polymer, we used the electrospinning technique to fabricate fibers composed of lecithin and bile salts, which are naturally occurring small biosurfactants. Lecithin is the main component of the cell membrane and bile salts are facial amphiphiles that involve in digestion process. In general, small molecules are unable to entangle in solutions. However, it has been reported that lecithin/bile salt mixtures can form wormlike-micelles in specific conditions in low polar organic solvents. Similar to polymer chains, the wormlike micelles are flexible chains that can be sufficiently long to entangle one another and impart viscoelasticity to solutions, which provides the opportunity for small molecules to be electrospun into fibers. By the strategy of molecular self-assembly, we successfully obtained lecithin/bile salt fibers electrospun from the solutions of lecithin/bile salt wormlike micelles in THF or cyclohexane/THF cosolvents. We systematically studied the required solvent quality, concentration, viscosity, and conductivity of the solutions and optimized the electrospinning conditions. The lecithin/bile salt fibers are fully biocompatible and could be potential for biomedical applications.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:23:47Z (GMT). No. of bitstreams: 1
ntu-105-R03549007-1.pdf: 4713150 bytes, checksum: 42d2228dcc3e6b8d96c2fb5a682ad997 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員會審定書...I
致謝 ... II
摘要 ... III
Abstract ... IV
目錄 ... V
表目錄 ... VII
圖目錄 ... VIII
第一章 緒論 ... 1
第二章 文獻回顧 ... 3
2.1 雙親性分子自組裝結構 ... 3
2.2 反式蟲狀微胞 ... 5
2.3 卵磷脂與膽鹽 ... 8
2.4 超分子高分子 ... 12
2.5 電紡抽絲 ... 14
第三章 實驗方法與儀器原理 ... 18
3.1 實驗藥品 ... 18
3.2 實驗步驟 ... 21
3.2.1 卵磷脂與膽鹽形成之反式蟲狀微胞溶液 ... 21
3.2.2 電紡抽絲設備架設與纖維收集 ... 21
3.3 儀器原理與分析 ... 22
第四章 結果與討論 ... 30
4.1卵磷脂與膽鹽於四氫呋喃形成之反式蟲狀微胞溶液與電紡 ... 30
4.1.1卵磷脂濃度100 mM與膽鹽比例變化於四氫呋喃 ... 31
4.1.2卵磷脂濃度200 mM與膽鹽比例變化於四氫呋喃 ... 34
4.1.3卵磷脂濃度300 mM與膽鹽比例變化於四氫呋喃 ... 37
4.1.4卵磷脂濃度300 mM與膽鹽比例變化於四氫呋喃之表面張力 ... 42
4.2卵磷脂與膽鹽於共溶劑(環己烷和四氫呋喃)形成之反式蟲狀微胞溶液 ... 43
4.2.1環己烷(Cyclohexane)與四氫呋喃(THF)形成共溶劑(Co-solvent)之介電常數 ... 43
4.2.2卵磷脂濃度200 mM與膽鹽比例變化於共溶劑3:7 (環己烷:四氫呋喃) ... 45
4.2.3卵磷脂濃度200 mM與膽鹽比例變化於共溶劑6:4 (環己烷:四氫呋喃) ... 48
4.2.4卵磷脂濃度200 mM與膽鹽比例變化於共溶劑7:3 (環己烷:四氫呋喃) ... 53
4.2.5卵磷脂濃度200 mM與膽鹽比例變化於共溶劑8:2 (環己烷:四氫呋喃) ... 58
4.2.6卵磷脂濃度100 mM與膽鹽比例變化於共溶劑6:4 (環己烷:四氫呋喃) ... 61
4.3卵磷脂與膽鹽形成反式蟲狀微胞之熱分析 ...65
4.4卵磷脂與膽鹽混合的纖維之比較與探討 ... 66
4.5卵磷脂與膽鹽比例變化於共溶劑中的小角X光散射之反式蟲狀微胞結構資訊 ... 67
第五章 結論 ... 69
第六章 參考文獻 ...70
dc.language.isozh-TW
dc.subject纖維zh_TW
dc.subject電紡抽絲zh_TW
dc.subject蟲狀微胞zh_TW
dc.subject卵磷脂zh_TW
dc.subject膽鹽zh_TW
dc.subject自組裝zh_TW
dc.subjectElectrospinningen
dc.subjectfibersen
dc.subjectself-assemblyen
dc.subjectbile saltsen
dc.subjectlecithinen
dc.subjectwormlike micellesen
dc.title由蟲狀微胞溶液製備卵磷脂/膽鹽靜電紡絲纖維zh_TW
dc.titleElectrospun Fibers of Lecithin/Bile Salt from Wormlike Micellar Solutionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英,郭霽慶,賴偉淇
dc.subject.keyword電紡抽絲,蟲狀微胞,卵磷脂,膽鹽,自組裝,纖維,zh_TW
dc.subject.keywordElectrospinning,wormlike micelles,lecithin,bile salts,self-assembly,fibers,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201602885
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved