Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊立民(Lee-Ming Chuang)
dc.contributor.authorIng-Jung Chenen
dc.contributor.author陳膺中zh_TW
dc.date.accessioned2021-06-15T11:21:42Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation1. Levy, M.M., et al., 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med, 2003. 29(4): p. 530-8.
2. Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016. 315(8): p. 801-10.
3. Pinsky, M.R., et al., Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest, 1993. 103(2): p. 565-75.
4. Joulin, O., et al., Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res, 2007. 56(3): p. 291-7.
5. Ginde, A.A., et al., Impact of older age and nursing home residence on clinical outcomes of US emergency department visits for severe sepsis. J Crit Care, 2013. 28(5): p. 606-11.
6. Martin, G.S., D.M. Mannino, and M. Moss, The effect of age on the development and outcome of adult sepsis. Crit Care Med, 2006. 34(1): p. 15-21.
7. Angus, D.C., et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001. 29(7): p. 1303-10.
8. Harrison, D.A., C.A. Welch, and J.M. Eddleston, The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Crit Care, 2006. 10(2): p. R42.
9. van Gestel, A., et al., Prevalence and incidence of severe sepsis in Dutch intensive care units. Crit Care, 2004. 8(4): p. R153-62.
10. Fink, M.P. and H.S. Warren, Strategies to improve drug development for sepsis. Nat Rev Drug Discov, 2014. 13(10): p. 741-58.
11. Gotts, J.E. and M.A. Matthay, Sepsis: pathophysiology and clinical management. BMJ, 2016. 353: p. i1585.
12. Kaukonen, K.M., et al., Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA, 2014. 311(13): p. 1308-16.
13. Hoshino, K., et al., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 1999. 162(7): p. 3749-52.
14. Takeuchi, O., K. Hoshino, and S. Akira, Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 2000. 165(10): p. 5392-6.
15. Gentile, L.F. and L.L. Moldawer, DAMPs, PAMPs, and the origins of SIRS in bacterial sepsis. Shock, 2013. 39(1): p. 113-4.
16. Tabeta, K., et al., Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3516-21.
17. Beutler, B.A., TLRs and innate immunity. Blood, 2009. 113(7): p. 1399-407.
18. Norris, P.C., et al., Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J Leukoc Biol, 2011. 90(3): p. 563-74.
19. Liu, Z., et al., TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation. J Immunol, 2013. 191(2): p. 857-64.
20. Kawai, T., et al., Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999. 11(1): p. 115-22.
21. Boulet, L., et al., Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J Biol Chem, 2004. 279(22): p. 23229-37.
22. Chen, J., et al., Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor. Am J Physiol Renal Physiol, 2008. 295(3): p. F818-25.
23. Hartney, J.M., et al., Prostaglandin E2 protects lower airways against bronchoconstriction. Am J Physiol Lung Cell Mol Physiol, 2006. 290(1): p. L105-13.
24. Szymanski, K.V., et al., Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur Respir J, 2012. 40(6): p. 1458-67.
25. Mirzapoiazova, T., et al., Suppression of endotoxin-induced inflammation by taxol. Eur Respir J, 2007. 30(3): p. 429-35.
26. Funk, C.D., Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001. 294(5548): p. 1871-5.
27. Medeiros, A., et al., Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm, 2012. 2012: p. 327568.
28. Kalinski, P., Regulation of immune responses by prostaglandin E2. J Immunol, 2012. 188(1): p. 21-8.
29. Kawahara, K., et al., Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim Biophys Acta, 2015. 1851(4): p. 414-21.
30. Dennis, E.A., Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem, 1994. 269(18): p. 13057-60.
31. Marshall, P.J. and R.J. Kulmacz, Prostaglandin H synthase: distinct binding sites for cyclooxygenase and peroxidase substrates. Arch Biochem Biophys, 1988. 266(1): p. 162-70.
32. DeWitt, D.L., E.A. Meade, and W.L. Smith, PGH synthase isoenzyme selectivity: the potential for safer nonsteroidal antiinflammatory drugs. Am J Med, 1993. 95(2A): p. 40S-44S.
33. Alabaster, V.A., Metabolism of arachidonic acid and its endoperoxide (PGH2) to myotropic products in guinea-pig and rabbit isolated lungs. Br J Pharmacol, 1980. 69(3): p. 479-89.
34. Paragi-Vedanthi, P. and M. Doble, Comparison of PGH2 binding site in prostaglandin synthases. BMC Bioinformatics, 2010. 11 Suppl 1: p. S51.
35. Ricciotti, E. and G.A. FitzGerald, Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol, 2011. 31(5): p. 986-1000.
36. Kudo, I. and M. Murakami, Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol, 2005. 38(6): p. 633-8.
37. Jakobsson, P.J., et al., Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7220-5.
38. Tanioka, T., et al., Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem, 2000. 275(42): p. 32775-82.
39. Akanuma, S., et al., Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E(2) across mouse blood-brain barrier and its inhibition by intravenous administration of cephalosporins. J Pharmacol Exp Ther, 2010. 333(3): p. 912-9.
40. Reid, G., et al., The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A, 2003. 100(16): p. 9244-9.
41. Russel, F.G., J.B. Koenderink, and R. Masereeuw, Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci, 2008. 29(4): p. 200-7.
42. Kochel, T.J. and A.M. Fulton, Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer. Prostaglandins Other Lipid Mediat, 2015. 116-117: p. 99-103.
43. Holla, V.R., et al., Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev Res (Phila), 2008. 1(2): p. 93-9.
44. Tai, H.H., et al., Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat, 2002. 68-69: p. 483-93.
45. Chou, W.L., et al., Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem, 2007. 282(25): p. 18162-72.
46. Wu, Y.H., et al., Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. Structure, 2008. 16(11): p. 1714-23.
47. Harmon, G.S., et al., Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice. Nat Med, 2010. 16(3): p. 313-8.
48. Chang, E.Y., et al., Inhibition of Prostaglandin Reductase 2, a Putative Oncogene Overexpressed in Human Pancreatic Adenocarcinoma, Induces Oxidative Stress-Mediated Cell Death Involving xCT and CTH Gene Expressions through 15-Keto-PGE2. PLoS One, 2016. 11(1): p. e0147390.
49. Chang, E.Y., et al., Prostaglandin reductase 2 modulates ROS-mediated cell death and tumor transformation of gastric cancer cells and is associated with higher mortality in gastric cancer patients. Am J Pathol, 2012. 181(4): p. 1316-26.
50. Segal, A.W. and A. Abo, The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci, 1993. 18(2): p. 43-7.
51. Turrens, J.F., Mitochondrial formation of reactive oxygen species. J Physiol, 2003. 552(Pt 2): p. 335-44.
52. Li, Y., et al., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 1995. 11(4): p. 376-81.
53. Van Remmen, H., et al., Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics, 2003. 16(1): p. 29-37.
54. Finkel, T., Reactive oxygen species and signal transduction. IUBMB Life, 2001. 52(1-2): p. 3-6.
55. Rhee, S.G., Cell signaling. H2O2, a necessary evil for cell signaling. Science, 2006. 312(5782): p. 1882-3.
56. Schieber, M. and N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr Biol, 2014. 24(10): p. R453-62.
57. DeLeo, F.R., et al., NADPH oxidase activation and assembly during phagocytosis. J Immunol, 1999. 163(12): p. 6732-40.
58. Park, J., et al., Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci Lett, 2015. 584: p. 191-6.
59. Mittal, M., et al., Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal, 2014. 20(7): p. 1126-67.
60. West, A.P., et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011. 472(7344): p. 476-80.
61. Bulua, A.C., et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med, 2011. 208(3): p. 519-33.
62. Weinberg, S.E., L.A. Sena, and N.S. Chandel, Mitochondria in the regulation of innate and adaptive immunity. Immunity, 2015. 42(3): p. 406-17.
63. Kong, X., et al., NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol, 2010. 185(1): p. 569-77.
64. Ma, Q., Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 2013. 53: p. 401-26.
65. Hayes, J.D. and A.T. Dinkova-Kostova, The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci, 2014. 39(4): p. 199-218.
66. Thimmulappa, R.K., et al., Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest, 2006. 116(4): p. 984-95.
67. Kong, X., et al., Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am J Respir Crit Care Med, 2011. 184(8): p. 928-38.
68. Kobayashi, A., et al., Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol, 2004. 24(16): p. 7130-9.
69. Zhang, D.D., et al., Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol, 2004. 24(24): p. 10941-53.
70. Mitsuishi, Y., H. Motohashi, and M. Yamamoto, The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol, 2012. 2: p. 200.
71. McMahon, M., et al., Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A, 2010. 107(44): p. 18838-43.
72. Zipper, L.M. and R.T. Mulcahy, The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem, 2002. 277(39): p. 36544-52.
73. Ogura, T., et al., Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A, 2010. 107(7): p. 2842-7.
74. Tong, K.I., et al., Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol, 2007. 27(21): p. 7511-21.
75. Canning, P., F.J. Sorrell, and A.N. Bullock, Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med, 2015. 88(Pt B): p. 101-7.
76. Fukutomi, T., et al., Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol, 2014. 34(5): p. 832-46.
77. Kobayashi, M., et al., The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol, 2009. 29(2): p. 493-502.
78. Zhang, D.D. and M. Hannink, Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol, 2003. 23(22): p. 8137-51.
79. Hur, W., et al., A small-molecule inducer of the antioxidant response element. Chem Biol, 2010. 17(5): p. 537-47.
80. Baird, L., et al., Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci U S A, 2013. 110(38): p. 15259-64.
81. Fink, M.P., Prostaglandins and sepsis: still a fascinating topic despite almost 40 years of research. Am J Physiol Lung Cell Mol Physiol, 2001. 281(3): p. L534-6.
82. Reddy, R.C., et al., Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. Am J Physiol Lung Cell Mol Physiol, 2001. 281(3): p. L537-43.
83. Pettipher, E.R. and D.J. Wimberly, Cyclooxygenase inhibitors enhance tumour necrosis factor production and mortality in murine endotoxic shock. Cytokine, 1994. 6(5): p. 500-3.
84. Gilroy, D.W., et al., Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med, 1999. 5(6): p. 698-701.
85. Lee, Y.J. and Y.C. Chuang, Ibuprofen augments pro-inflammatory cytokine release in a mouse model of Vibrio vulnificus infection. Microbiol Immunol, 2010. 54(9): p. 542-50.
86. Aid, S., R. Langenbach, and F. Bosetti, Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. J Neuroinflammation, 2008. 5: p. 17.
87. Brenneis, C., et al., Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem, 2011. 286(3): p. 2331-42.
88. Frolov, A., et al., Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fatty Acids, 2013. 89(5): p. 351-8.
89. Dolan, J.M., et al., Increased lethality and defective pulmonary clearance of Streptococcus pneumoniae in microsomal prostaglandin E synthase-1-knockout mice. Am J Physiol Lung Cell Mol Physiol, 2016. 310(11): p. L1111-20.
90. Birrell, M.A., et al., Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax, 2015. 70(8): p. 740-7.
91. MacKenzie, K.F., et al., PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol, 2013. 190(2): p. 565-77.
92. Choi, S.H., et al., Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis. J Clin Invest, 2014. 124(6): p. 2472-82.
93. Kaushal, N., et al., Crucial role of macrophage selenoproteins in experimental colitis. J Immunol, 2014. 193(7): p. 3683-92.
94. Lee, T.S., H.L. Tsai, and L.Y. Chau, Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-Delta 12,14-prostaglandin J2. J Biol Chem, 2003. 278(21): p. 19325-30.
95. Kansanen, E., A.M. Kivela, and A.L. Levonen, Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2. Free Radic Biol Med, 2009. 47(9): p. 1310-7.
96. Heyninck, K., et al., Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway. Biochem Pharmacol, 2016. 109: p. 48-61.
97. Nakanishi, T., et al., Prostaglandin Transporter (PGT/SLCO2A1) Protects the Lung from Bleomycin-Induced Fibrosis. PLoS One, 2015. 10(4): p. e0123895.
98. Berry, A., et al., IL-13 induces expression of CD36 in human monocytes through PPARgamma activation. Eur J Immunol, 2007. 37(6): p. 1642-52.
99. Olagnier, D., et al., Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria. PLoS Pathog, 2011. 7(9): p. e1002254.
100. Nishigaki, N., M. Negishi, and A. Ichikawa, Two Gs-coupled prostaglandin E receptor subtypes, EP2 and EP4, differ in desensitization and sensitivity to the metabolic inactivation of the agonist. Mol Pharmacol, 1996. 50(4): p. 1031-7.
101. Tatsuwaki, H., et al., Reduction of 15-hydroxyprostaglandin dehydrogenase expression is an independent predictor of poor survival associated with enhanced cell proliferation in gastric adenocarcinoma. Cancer Sci, 2010. 101(2): p. 550-8.
102. Chan, B.S., et al., Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol, 2002. 282(6): p. F1097-102.
103. Yang, L., et al., PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun, 2014. 5: p. 4436.
104. Krawczyk, C.M., et al., Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 2010. 115(23): p. 4742-9.
105. Freemerman, A.J., et al., Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem, 2014. 289(11): p. 7884-96.
106. Shi, L., et al., MiR-141 Activates Nrf2-Dependent Antioxidant Pathway via Down-Regulating the Expression of Keap1 Conferring the Resistance of Hepatocellular Carcinoma Cells to 5-Fluorouracil. Cell Physiol Biochem, 2015. 35(6): p. 2333-48.
107. Yang, J.J., et al., MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cell Signal, 2014. 26(11): p. 2381-9.
108. Taguchi, K., H. Motohashi, and M. Yamamoto, Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011. 16(2): p. 123-40.
109. Guo, J.Y., H. Bian, and Y. Yao, Chronic unpredictable mild stress induces parallel reductions of 15-PGDH in the hypothalamus and lungs in rats. Behav Brain Res, 2015. 286: p. 278-84.
110. Kaplan, J.M., et al., 15-Deoxy-delta(12,14)-prostaglandin J(2) (15D-PGJ(2)), a peroxisome proliferator activated receptor gamma ligand, reduces tissue leukosequestration and mortality in endotoxic shock. Shock, 2005. 24(1): p. 59-65.
111. Zingarelli, B., et al., Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol, 2003. 171(12): p. 6827-37.
112. Fullerton, J.N., A.J. O'Brien, and D.W. Gilroy, Lipid mediators in immune dysfunction after severe inflammation. Trends Immunol, 2014. 35(1): p. 12-21.
113. Fullerton, J.N. and D.W. Gilroy, Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov, 2016. 15(8): p. 551-67.
114. Zhang, X., R. Goncalves, and D.M. Mosser, The isolation and characterization of murine macrophages. Curr Protoc Immunol, 2008. Chapter 14: p. Unit 14 1.
115. Toscano, M.G., D. Ganea, and A.M. Gamero, Cecal ligation puncture procedure. J Vis Exp, 2011(51).
116. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49273-
dc.description.abstract敗血症(Sepsis)是一種系統性的發炎反應,伴隨因感染引起的多重器官失去功能。各種不同的前列腺素的功能在敗血症中均受到廣泛的研究,尤其前列腺素和其代謝產物在先天免疫系統和免疫反應調節中均扮演重要角色。15-keto-PGE2是前列腺素E2 下游的代謝產物,且為過氧化物酶體增殖物活化受體 (PPARγ) 的內源性受體,經由前列腺素還原酶-2 (PTGR2)代謝。 此外,我們已知15-keto-PGE2在脂肪細胞分化過程中作為PPARγ活性調節者,同時對CTFR-/-老鼠模式中疾病的進展至關重要。然而至今,我們對15-keto-PGE2 及其代謝酵素PTGR2在發炎反應中所扮演的角色仍然未知。
在本篇論文中,我們提供了對15-keto-PGE2以及其代謝酵素PTGR2在活化巨噬細胞方面功能性和機制層面的探討。首先,內毒素所誘發的巨噬細胞中會產生大量15-keto-PGE2。此外,減少PTGR2表現會導致15-keto-PGE2的累積,造成巨噬細胞無法正常活化並減少細胞激素分泌。當我們加入外源性15-keto-PGE2或PTGR2 knockdown的細胞均顯現出抗氧化反應序列(ARE)的報告基因活性與其下游抗氧化基因表現上升。我們更進一步發現,和正常細胞相較,PTGR2 knockdown 細胞中表現較低濃度的活性氧類(ROS),和較大量的抗氧化基因表現。就機制層面而言,外源性15-keto-PGE2會促進細胞中NRF2累積和高分子量的Keap1合成。最後我們發現,不論是PTGR2基因剔除鼠或15-keto-PGE2治療組的小鼠, 均能提高實驗性敗血症的存活率。總括而言,我們確認15-keto-PGE2為內源性的抗氧化促進者,亦提供了15-keto-PGE2和PTGR2缺失造成的免疫抑制效應的實驗證據,證明了PTGR2與15-keto-PGE2在發炎反應進程中的重要性,也為未來PTGR2 和15-keto-PGE2作為抗發炎標靶開啟了新的可能性。
zh_TW
dc.description.abstractSepsis is a systemic inflammation accompanied by multi-organ dysfunction due to infection. Distinct prostaglandin metabolism has been widely studied in this condition and many of these prostaglandins and their metabolites play important role in the regulation of innate immune response. 15keto-PGE2 is a prostaglandin E2 metabolite catalyzed via prostaglandin reductase 2 (PTGR2). It was previously characterized as an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ) and played important regulatory roles in adipocyte differentiation and disease progression in CTFR-/- animals. However, little is known about the role of 15keto-PGE2 and the catabolic enzyme PTGR2 during the development of inflammation.
In this thesis, we present functional and mechanistic analyses of 15keto-PGE2 and PTGR2 in macrophages activation. LPS-induced macrophages resulted in a substantial upregulation of 15keto-PGE2 level. Furthermore, disruption of PTGR2 showed significant accumulation of 15keto-PGE2 and resulted in impaired macrophages activation and cytokines suppression. Exogenous treatment of 15keto-PGE2 and PTGR2 knockdown cells exhibited augmented antioxidant response element (ARE) reporter activity, along with the upregulation of antioxidant genes expressions. Mechanistically, 15keto-PGE2 promoted NRF2 accumulation independently of PPARγ activity. Furthermore, PTGR2 knockdown cells presented lower basal ROS level and higher antioxidant response genes expressions compared to control cells. Lastly, ptgr2-deficient mice were more resistant to endotoxin or cecal ligation and puncture (CLP)-induced sepsis. Taken together, we identified 15keto-PGE2 as an endogenous activator of antioxidant response and provided evidence of the immune-suppressive effect of 15keto-PGE2 and PTGR2 deficiency via in vitro and in vivo experiments. Our study affirms the significance of PTGR2 and 15keto-PGE2 in the progression of inflammatory response and suggest a novel anti-inflammatory therapy through targeting PTGR2/15keto-PGE2.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:21:42Z (GMT). No. of bitstreams: 1
ntu-105-F98448015-1.pdf: 3768289 bytes, checksum: 501e9fecbc9b7e668029b478241081c6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 i
Abstract iv
Table of contents vi
1 Introduction: Background and Experimental Rationale 1
1.1 Sepsis 1
1.2 Prostaglandin E2 and inflammation 2
1.3 PGE2: synthesis and degradation 3
1.4 PTGR2 4
1.5 Reactive Oxygen Species and innate immunity 5
1.6 NRF2 regulation and Immune response 5
1.7 Experimental Rationale 7
2 Results 9
2.1 PTGR2 regulates intracellular 15-keto-PGE2 level in murine macrophages 9
2.2 Knockdown of PTGR2 resulted in a dysregulated activation of macrophages 10
2.3 15-keto-PGE2 is an endogenous activator of antioxidant response 12
2.4 15-keto-PGE2 enhance antioxidant response genes and negatively regulate pro-inflammatory cytokines 14
2.5 15-keto-PGE2 promotes NRF2 nuclear accumulation 16
2.6 PTGR2 regulates ROS homeostasis through NRF2 17
2.7 15-keto-PGE2 regulates high molecular weight Keap1 formation. 18
2.8 ptgr2-deficient mice are resistant to sepsis-induced mortality 19
2.9 15-keto-PGE2 protected mice from experimental sepsis 21
3 Discussion 22
4 Figures 29
5 Materials and Methods 56
5.1 Cell culture 56
5.2 BMDM isolation and culture 56
5.3 Transfection and reporter activity 57
5.4 Immunoprecipitation 57
5.5 Lentiviral Transduction 58
5.6 Animal model 58
5.7 RNA extraction and quantitative PCR 59
5.8 Nuclear and cytosolic fractionation 60
5.9 Immunoblotting 60
5.10 Measurement of ROS level 61
5.11 Prostaglandin extraction and lipidomic analysis 61
5.12 Elisa assay 63
5.13 Statistical Analysis 63
6 Appendix 65
7 References 68
dc.language.isoen
dc.subject敗血症zh_TW
dc.subject前列腺素還原?-2zh_TW
dc.subject15-keto-PGE2zh_TW
dc.subjectNRF2zh_TW
dc.subject抗發炎反應zh_TW
dc.subject活性氧類zh_TW
dc.subjectROSen
dc.subjectNRF2en
dc.subjectSepsisen
dc.subject15-keto-PGE2en
dc.subjectAnti-oxidanten
dc.subjectPTGR2en
dc.title第二型前列腺素還原酶在實驗性敗血症中的角色:功能與機制之探討zh_TW
dc.titleRole of prostaglandin reductase 2 in experimental sepsis: functional and mechanistic studiesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),余家利(Chia-Li Yu),徐立中(Li-Chung Hsu),許秉寧(Ping-Ning Hsu)
dc.subject.keyword前列腺素還原?-2,15-keto-PGE2,NRF2,抗發炎反應,活性氧類,敗血症,zh_TW
dc.subject.keywordPTGR2,15-keto-PGE2,NRF2,Anti-oxidant,ROS,Sepsis,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201603357
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved