Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49260
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳譽仁
dc.contributor.authorYu-Lin Fuen
dc.contributor.author傅宥霖zh_TW
dc.date.accessioned2021-06-15T11:21:12Z-
dc.date.available2016-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citationReferences
1. Bogduk N, Pearcy MJ, G. H. Anatomy and biomechanics of psoas major. Clin Biomech. 1992:7:109-19.
2. Santaguida PL, McGill SM. The psoas major muscle: A three-dimensional geometric study. J Biomech. 1995:28:339-45.
3. Dankaerts W, O'Sullivan P, Burnett A, Straker L. Altered patterns of superficial trunk muscle activation during sitting in nonspecific chronic low back pain patients: Importance of subclassification. Spine (Phila Pa 1976). 2006:31:2017-23.
4. Park RJ, Tsao H, Claus A, Cresswell AG, Hodges PW. Recruitment of discrete regions of the psoas major and quadratus lumborum muscles is changed in specific sitting postures in individuals with recurrent low back pain. J Orthop Sports Phys Ther. 2013:43:833-40.
5. Dangaria TR, Naesh O. Changes in cross-sectional area of psoas major muscle in unilateral sciatica caused by disc herniation. Spine (Phila Pa 1976). 1998:23:928-31.
6. Ploumis A, Michailidis N, Christodoulou P, Kalaitzoglou I, Gouvas G, Beris A. Ipsilateral atrophy of paraspinal and psoas muscle in unilateral back pain patients with monosegmental degenerative disc disease. Br J Radiol. 2011:84:709-13.
7. Barker KL, Shamley DR, Jackson D. Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: The relationship to pain and disability. Spine (Phila Pa 1976). 2004:29:E515-9.
8. Williams P, Bannister L, Berry MM. Gray’s anatomy. 38th international edition. Churchill-Livingstone Edinburg. 1995:1-2092.
9. Gibbons S. Assessment and rehabilitation of the stability function of psoas major. Manuelle Therapie. 2007:11:177-87.
10. Park RJ, Tsao H, Claus A, Cresswell AG, Hodges PW. Changes in regional activity of the psoas major and quadratus lumborum with voluntary trunk and hip tasks and different spinal curvatures in sitting. J Orthop Sports Phys Ther. 2013:43:74-82.
11. Park RJ, Tsao H, Cresswell AG, Hodges PW. Differential activity of regions of the psoas major and quadratus lumborum during submaximal isometric trunk efforts. J Orthop Res. 2012:30:311-8.
12. Park RJ, Tsao H, Cresswell AG, Hodges PW. Changes in direction-specific activity of psoas major and quadratus lumborum in people with recurring back pain differ between muscle regions and patient groups. J Electromyogr Kinesiol. 2013:23:734-40.
13. Neumann DA, Garceau LR. A proposed novel function of the psoas minor revealed through cadaver dissection. Clin Anat. 2015:28:243-52.
14. Delp SL, Suryanarayanan S, Murray WM, Uhlir J, Triolo RJ. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. Journal of Biomechanics. 2001:34:371-5.
15. Ward SR, Kim CW, Eng CM, Gottschalk LJt, Tomiya A, Garfin SR, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am. 2009:91:176-85.
16. Regev GJ, Kim CW, Tomiya A, Lee YP, Ghofrani H, Garfin SR, et al. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine (Phila Pa 1976). 2011:36:E1666-74.
17. Arbanas J, Klasan GS, Nikolic M, Jerkovic R, Miljanovic I, Malnar D. Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat. 2009:215:636-41.
18. Hesse B, Frober R, Fischer MS, Schilling N. Functional differentiation of the human lumbar perivertebral musculature revisited by means of muscle fibre type composition. Ann Anat. 2013:195:570-80.
19. Penning L. Psoas muscle and lumbar spine stability:
A concept uniting existing controversies. European Spine Journal. 2000:9: 577-85.
20. Andersson E, Oddsson L, Grundstrom H, Thorstensson A. The role of the psoas and iliacus muscles for stability and movement of the lumbar spine, pelvis and hip. Scand J Med Sci Sports. 1995:5:10-6.
21. Hu H, Meijer OG, van Dieen JH, Hodges PW, Bruijn SM, Strijers RL, et al. Is the psoas a hip flexor in the active straight leg raise? Eur Spine J. 2011:20:759-65.
22. Juker D, McGill S, Kropf P, Steffen T. Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Med Sci Sports Exerc. 1998:30:301-10.
23. Park RJ, Tsao H, Cresswell AG, Hodges PW. Anticipatory postural activity of the deep trunk muscles differs between anatomical regions based on their mechanical advantage. Neuroscience. 2014:261:161-72.
24. Falla D, Jull G, Hodges PW. Feedforward activity of the cervical flexor muscles during voluntary arm movements is delayed in chronic neck pain. Exp Brain Res. 2004:157:43-8.
25. Teyhen D. Rehabilitative ultrasound imaging symposium san antonio, tx, may 8-10, 2006. J Orthop Sports Phys Ther. 2006:36:A1-3.
26. Hides J, Wilson S, Stanton W, McMahon S, Keto H, McMahon K, et al. An mri investigation into the function of the transversus abdominis muscle during 'drawing-in' of the abdominal wall. Spine (Phila Pa 1976). 2006:31:E175-8.
27. Koppenhaver SL, Hebert JJ, Parent EC, Fritz JM. Rehabilitative ultrasound imaging is a valid measure of trunk muscle size and activation during most isometric sub-maximal contractions: A systematic review. Australian Journal of Physiotherapy. 2009:55:153-69.
28. Kiesel KB, Uhl TL, Underwood FB, Rodd DW, Nitz AJ. Measurement of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Man Ther. 2007:12:161-6.
29. Hodges PW, Pengel LH, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003:27:682-92.
30. McMeeken JM, Beith ID, Newham DJ, Milligan P, Critchley DJ. The relationship between emg and change in thickness of transversus abdominis. Clin Biomech (Bristol, Avon). 2004:19:337-42.
31. John EK, Beith ID. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging? Clin Biomech (Bristol, Avon). 2007:22:972-9.
32. Mendis MD, Wilson SJ, Stanton W, Hides JA. Validity of real-time ultrasound imaging to measure anterior hip muscle size: A comparison with magnetic resonance imaging. J Orthop Sports Phys Ther. 2010:40:577-81.
33. Takai Y, Katsumata Y, Kawakami Y, Kanehisa H, Fukunaga T. Ultrasound method for estimating the cross-sectional area of the psoas major muscle. Med Sci Sports Exerc. 2011:43:2000-4.
34. Wan Q, Lin C, Li X, Zeng W, Ma C. Mri assessment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol. 2015:88:20140546.
35. Arbanas J, Pavlovic I, Marijancic V, Vlahovic H, Starcevic-Klasan G, Peharec S, et al. Mri features of the psoas major muscle in patients with low back pain. Eur Spine J. 2013:22:1965-71.
36. Parkkola R, Rytokoski U, Kormano M. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine (Phila Pa 1976). 1993:18:830-6.
37. de Groot M, Pool-Goudzwaard AL, Spoor CW, Snijders CJ. The active straight leg raising test (aslr) in pregnant women: Differences in muscle activity and force between patients and healthy subjects. Manual Therapy. 2008:13:68-74.
38. Jeon IC, Kwon OY, Weon JH, Choung SD, Hwang UJ. Comparison of psoas major muscle thickness measured by sonography during active straight leg raising in subjects with and without uncontrolled lumbopelvic rotation. Man Ther. 2016:21:165-9.
39. Dankaerts W, O'Sullivan P, Burnett A, Straker L. Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified. Spine (Phila Pa 1976). 2006:31:698-704.
40. Kim S, Kim H, Chung J. Effects of spinal stabilization exercise on the cross-sectional areas of the lumbar multifidus and psoas major muscles, pain intensity, and lumbar muscle strength of patients with degenerative disc disease. Journal of physical therapy science. 2014:26:579-82.
41. Mendis MD, Hides JA. Effect of motor control training on hip muscles in elite football players with and without low back pain. J Sci Med Sport. 2016.
42. Gabbe BJ, Bennell KL, Wajswelner H, Finch CF. Reliability of common lower extremity musculoskeletal screening tests. Physical Therapy in Sport. 2004:5:90-7.
43. Hodges PW, Tucker K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain. 2011:152:S90-8.
44. D'Hooge R, Hodges P, Tsao H, Hall L, Macdonald D, Danneels L. Altered trunk muscle coordination during rapid trunk flexion in people in remission of recurrent low back pain. J Electromyogr Kinesiol. 2013:23:173-81.
45. MacDonald D, Moseley GL, Hodges PW. Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. 2009:142:183-8.
46. D'Hooge R, Cagnie B, Crombez G, Vanderstraeten G, Achten E, Danneels L. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain: Evaluation with muscle functional mri. Clin J Pain. 2013:29:187-94.
47. Danneels L, Cagnie B, D'Hooge R, De Deene Y, Crombez G, Vanderstraeten G, et al. The effect of experimental low back pain on lumbar muscle activity in people with a history of clinical low back pain: A muscle functional mri study. J Neurophysiol. 2016:115:851-7.
48. Beneck GJ, Story JW, Donald S. Postural cueing to increase lumbar lordosis increases lumbar multifidus activation during trunk stabilization exercises: Electromyographic assessment using intramuscular electrodes. J Orthop Sports Phys Ther. 2016:46:293-9.
49. Andersson GB, Ortengren R, Nachemson A. Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res. 1977:156-64.
50. Macdonald DA, Dawson AP, Hodges PW. Behavior of the lumbar multifidus during lower extremity movements in people with recurrent low back pain during symptom remission. J Orthop Sports Phys Ther. 2011:41:155-64.
51. Kim SH, Kwon OY, Yi CH, Cynn HS, Ha SM, Park KN. Lumbopelvic motion during seated hip flexion in subjects with low-back pain accompanying limited hip flexion. Eur Spine J. 2014:23:142-8.
52. Arnold AS, Salinas S, Asakawa DJ, Delp SL. Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Computer Aided Surgery. 2000:5:108-19.
53. Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: Effect and possible mechanisms. Journal of Electromyography and Kinesiology. 2003:13:361-70.
54. Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC. Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res. 2003:151:262-71.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49260-
dc.description.abstract研究背景: 腰大肌為人體上唯一一條由腰椎連結到下肢的肌肉,生物力學和解剖相關研究都顯示當此肌肉收縮時,可以提供腰椎在矢狀面上的曲度(curvature)的控制,並且透過正向壓力增進腰椎的穩定性。下背痛族群在坐姿時腰椎曲度的控制、軀幹肌肉的神經肌肉控制皆和健康族群有所不同,另外先前研究也指出在單側下背痛的病人族群中,其疼痛側的腰大肌截面積顯著小於健康側,因此,對於單側下背痛族群中的腰大肌對於腰椎曲度控制的功能探討則顯得重要,然而,由於此肌肉位於人體較深層的位置,對於腰大肌的研究目前多為靜態時的核磁共振影像(MRI)與靜態針極肌電圖(Needle Electromyography)來研究腰大肌的截面積改變或是活化程度,使用動態影像量測且非侵入性的研究仍十分有限。
研究目的: 此研究有兩個研究目的,第一個為比較單側下背痛病人與健康族群之間在執行腰椎前凸任務下(lumbar lordosis maneuver)於腰大肌厚度變化量與豎脊肌活化程度的差異。另外,探討單側下背痛病人疼痛側、非疼痛測在執行腰椎前凸任務下於腰大肌厚度變化量和豎脊肌活化程度的差異。
研究方法:本計畫研究族群年齡介於20-45 歲之健康男性,以及三個月內有單側下背痛之症狀男性。此計畫研究為橫斷式(cross-section)分析,除了基本柔軟度、疼痛量表紀錄外,將以表面肌電圖和超音波影像來量化受試者在執行腰椎前凸任務時軀幹肌肉豎脊肌活化程度和腰大肌的厚度變化量。此計畫研究將使用無母數分析統計方法之一-曼-惠特尼U考驗法(Mann-whitney u test)分析比較兩組別(健康組、疼痛組)在不同腰椎前凸壓力下腰大肌厚度變化量和豎脊肌活化程度,另外使用魏克生符號檢定(Wilcoxon Signed Rank test)分析比較兩側(疼痛側、非疼痛側)之差異。所有分析統計上顯著差異設定為α<.05。
研究結果: 本研究共招募二十三位受試者(健康組:13; 下背痛組:10),兩組在年齡(健康: 21.4 ± 2.5 年; 下背痛: 25.4 ± 4.1 年)、身體質量指數有顯著差異(健康: 21.3 ± 0.5 Kg/m2 下背痛: 23.5 ± 1.1 Kg/m2)。兩組在下肢柔軟度、腰大肌收縮形變上有顯著的差異。柔軟度部分,下背痛組別在髖伸肌、湯瑪士測試皆較健康組來的受限。在腰大肌厚度變化量上,下背痛組在於較大收縮程度的腰椎前凸動作下顯著低於健康組別。(40-25mmHg: 健康: 23.2 ± 14.6 %;下背痛:11.1 ± 4.1 %, p=0.006; 40-20mmHg: 健康: 29.2 ± 15.7 %; 下背痛:12.2 ± 6.5 %, p=0.001). 兩組在豎脊肌活化程度則沒有顯著差異。統計結果顯示在單側下背痛組別中,疼痛側和非疼痛側在腰大肌厚度變化量、豎脊肌活化程度並無顯著差異。
結論: 使用超音波動態影像可以發現單側下背痛組在執行腰椎前凸任務時腰大肌厚度變化量顯著低於健康組別。腰大肌可提供腰椎曲度穩定,單側下背痛組別在腰大肌收縮上和健康人有所差異,此研究結果提供往後針對此肌肉訓練和評估的可能性。
zh_TW
dc.description.abstractBackground Psoas major (PM) is the only muscle that attaches to both lumbar spine and hip joint. Anatomical and biomechanical studies revealed that PM contraction could increase segmental compressive force that leads to an increase in lumbar stability and also controls lumbar lordosis. Patients with low back pain (LBP) had different lumbar curvatures and neuromuscular recruitment strategies in sitting positions. Several studies indicated that patients with unilateral LBP showed significant reductions in PM cross-sectional areas at their symptomatic sides of their backs but most of them are static MRI approaches. Therefore, it is warranted to investigate whether PM thickness changes differently during dynamic lumbar lordosis maneuver between patients with unilateral LBP and healthy populations using a dynamic imaging approach.
Purpose There are two purposes of this study. First, to investigate whether the neuromuscular control of PM and erector spinae muscle during lumbar lordosis maneuver are different between unilateral LBP and healthy individuals. Second, to investigate whether the neuromuscular control of PM and erector spinae during lumbar lordosis maneuver are different between painful side and non-painful side in the LBP population.
Methods Both LBP patients and healthy subjects were recruited in this study, and patients with unilateral LBP were recruited from National Taiwan University hospital. Besides recording basic data, PM and erector spinae muscle were measured by ultrasonography and surface electromyography respectively during lumbar lordosis maneuver simultaneously in different contraction levels for each subjects. Data were analyzed using SPSS18.0 version, and were presented as means ± standard deviations and percentages. Mann-whitney u test were used to analyze the ratios of thickness changes in PM, erector spinae EMG magnitudes between groups (unilateral LBP, healthy) and Wilcoxon Signed Rank test were used to analyze outcome measures between sides (painful side, non-painful side) during different contraction levels. The significance level was set at α< 0.05.
Results: A total of twenty-three participants enrolled in this study. (Healthy:13; LBP:10) Significant group differences in age (Healthy: 21.4 ± 2.5 y/o; LBP: 25.4 ± 4.1 y/o) and BMI (Healthy: 21.3 ± 0.5 Kg/m2; LBP: 23.5 ± 1.1 Kg/m2) were detected. Mann-Whitney U test revealed that there were significant group differences in ratios of PM thickness changes in higher contraction levels (40-25mmHg: Healthy: 23.2± 14.6 %; LBP:11.1 ± 4.1 %, p=0.006; 40-20mmHg: Healthy: 29.2 ± 15.7 %; LBP:12.2 ± 6.5 %, p=0.001). There were no significant group differences in erector spinae muscle activities in all contraction levels. Within unilateral LBP group, there were no side to side differences in ratios of PM thickness changes and erector spinae muscle activities in all contraction levels.
Conclusion: There was a significant reduction in ratios of PM thickness changes during dynamic lumbar lordosis maneuver in persons with unilateral LBP when compared to healthy controls. Furthermore, ultrasound can be a feasible tool in clinical practice to examine PM thickness changes in a non-invasive, dynamic approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:21:12Z (GMT). No. of bitstreams: 1
ntu-105-R03428002-1.pdf: 2554911 bytes, checksum: cdd380ecfd4fa02bbbce92dc34afe449 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Chapter I: Introduction 1
1.1 Background 1
1.2 Purposes 3
1.3 Research questions 4
1.4 Hypotheses 4
Chapter II: Literature review 6
2.1 Anatomy of psoas major 6
2.2 Physiology of psoas major 8
2.3 Biomechanics of psoas major in lumbar spine 10
2.4 Motor function 13
2.5 Ultrasound imaging (USD) measuring muscle architecture 17
2.6 Clinical observations regarding psoas major 19
Chapter III: Methods 29
3.1 Study design 29
3.2 Participants 29
3.3 Testing procedure 30
3.3.1 Electromyography/MVC procedure 31
3.3.2 Familiarization session for lumbar lordosis 32
3.3.3 Lumbar lordosis maneuver 33
3.4 Data reduction/image acquisition 34
3.5 Statistical analysis 36
Chapter IV: Results 37
4.1 Demographic data 37
4.2 Outcome measures between groups 37
4.3 Outcome measures between painful and non-painful side 40
Chapter V: Discussion 41
5.1 Absolute thickness difference between group 41
5.2 PM activities in individuals with low back pain (LBP) 43
5.3 A novel approach to examine PM thickness changes during lumbar lordosis maneuver 44
5.4 The influence of unilateral low back pain (LBP) 46
5.5 Lumbar lordosis and lumbar stabilizers 49
5.6 Possible mechanisms relating PM function to unilateral low back pain… 52
5.7 Limitations 53
5.8 Clinical implications 54
Chapter VI: Conclusions 56
References 57
Table 62
List of Figures 71
Appendix 81
dc.language.isoen
dc.title腰大肌收縮厚度變化之動態超音波研究—比較單側下背痛與健康族群之差異zh_TW
dc.titlePsoas Major Thickness Changes during a Lumbar Lordosis Maneuver in Persons with and without Unilateral Low Back Pain—
an Ultrasonography Study
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑芬,朱美滿,黃正雅
dc.subject.keyword超音波影像,腰大肌,單側下背痛,腰椎前凸,肌肉形變量,zh_TW
dc.subject.keywordUltrasonography,Psoas major,Lordosis,Unilateral low back pain,Muscle thickness changes,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201603355
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved