請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫 | |
| dc.contributor.author | Yu-Chen Yau | en |
| dc.contributor.author | 姚羽真 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:20:57Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | Amato, F., and Hopke, P. K. (2012). Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmospheric Environment, 46, 329-337. doi: 10.1016/j.atmosenv.2011.09.062
Anttila, P., Paatero, P., Tapper, U., and Järvinen, O. (1995). Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment, 29(14), 1705-1718. Brown, S. G., Frankel, A., and Hafner, H. R. (2007). Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmospheric Environment, 41(2), 227-237. Buzcu, B., and Fraser, M. P. (2006). Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment, 40(13), 2385-2400. Cao, J. J., Chow, J. C., Watson, J. G., Wu, F., Han, Y. M., Jin, Z. D., . . . An, Z. S. (2008). Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmospheric Environment, 42(10), 2261-2275. doi: 10.1016/j.atmosenv.2007.12.041 Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K., . . . Watson, J. G. (2003). Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment, 37(11), 1451-1460. doi: 10.1016/s1352-2310(02)01002-6 Castanho, A. D. A., and Artaxo, P. (2001). Wintertime and summertime Sao Paulo aerosol source apportionment study. Atmospheric Environment, 35(29), 4889-4902. doi: 10.1016/s1352-2310(01)00357-0 Chan, Y. C., Simpson, R. W., McTainsh, G. H., Vowles, P. D., Cohen, D. D., and Bailey, G. M. (1997). Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment, 31(22), 3773-3785. doi: 10.1016/s1352-2310(97)00213-6 Chen, N. (2015). Evaluation of a Mixed Receptor Model Which Combined the Constrained PMF Model with the Multiple-Time-Resolution PMF Model: a Simulation Study. 評估整合多重時間解析度受體模式及限縮受體模式之成效: 數值模擬研究 (碩士論文). Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., and Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651-2662. doi: 10.1016/j.atmosenv.2011.02.066 Chio, C.-P. (2005). Chemical Compositions and Source Apportionment to PM2.5 and PM2.5-10 Aerosols at Urban and Coastal Areas in Central Taiwan. 台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究 (博士論文). Choi, E., Heo, J. B., Hopke, P. K., Jin, B. B., and Yi, S. M. (2011). Identification, Apportionment, and Photochemical Reactivity of Non-methane Hydrocarbon Sources in Busan, Korea. Water Air and Soil Pollution, 215(1-4), 67-82. Chow, J. C. (1995). MEASUREMENT METHODS TO DETERMINE COMPLIANCE WITH AMBIENT AIR-QUALITY STANDARDS FOR SUSPENDED PARTICLES. Journal of the Air & Waste Management Association, 45(5), 320-382. Chow, J. C., Fujita, E. M., Watson, J. G., Lu, Z. Q., Lawson, D. R., and Asbaugh, L. L. (1994). EVALUATION OF FILTER-BASED AEROSOL MEASUREMENTS DURING THE 1987 SOUTHERN CALIFORNIA AIR-QUALITY STUDY. Environmental Monitoring and Assessment, 30(1), 49-80. doi: 10.1007/bf00546199 Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X. L., and Watson, J. G. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality Atmosphere and Health, 8(3), 243-263. doi: 10.1007/s11869-015-0338-3 Chow, J. C., Watson, J. G., Houck, J. E., Pritchett, L. C., Rogers, C. F., Frazier, C. A., . . . Ball, B. M. (1994). A LABORATORY RESUSPENSION CHAMBER TO MEASURE FUGITIVE DUST SIZE DISTRIBUTIONS AND CHEMICAL-COMPOSITIONS. Atmospheric Environment, 28(21), 3463-3481. doi: 10.1016/1352-2310(94)90005-1 Chow, J. C., Watson, J. G., Lu, Z. Q., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., . . . Magliano, K. (1996). Descriptive analysis of PM(2.5) and PM(10) at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(12), 2079-2112. doi: 10.1016/1352-2310(95)00402-5 DeBell LJ, Gebhart KA, Hand JL, Malm WC, Pitchford ML, Schichtel BA, and WH, W. (2006). Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States: Report IV. National Parks Service, Fort Collins, CO. Draxler, R. R., and Rolph, G. D. (2015). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via READY website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD. Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., and Bayram, A. (2014). Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmospheric Environment, 98, 168-178. Friedlan.Sk. (1973). CHEMICAL ELEMENT BALANCES AND IDENTIFICATION OF AIR-POLLUTION SOURCES. Environmental Science & Technology, 7(3), 235-240. doi: 10.1021/es60075a005 Gugamsetty, B., Wei, H., Liu, C.-N., Awasthi, A., Hsu, S.-C., Tsai, C.-J., . . . Chen, C.-F. (2012). Source characterization and apportionment of PM10, PM2. 5 and PM0. 1 by using positive matrix factorization. Aerosol Air Qual. Res, 12, 476-491. Han, J., Moon, K., Lee, S., Kim, Y., Ryu, S., Cliff, S., and Yi, S. (2006). Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. Atmospheric Chemistry and Physics, 6(1), 211-223. Harley, R. A., and Cass, G. R. (1995). MODELING THE ATMOSPHERIC CONCENTRATIONS OF INDIVIDUAL VOLATILE ORGANIC-COMPOUNDS. Atmospheric Environment, 29(8), 905-922. doi: 10.1016/1352-2310(94)00287-u Harley, R. A., Hannigan, M. P., and Cass, G. R. (1992). RESPECIATION OF ORGANIC GAS EMISSIONS AND THE DETECTION OF EXCESS UNBURNED GASOLINE IN THE ATMOSPHERE. Environmental Science & Technology, 26(12), 2395-2408. doi: 10.1021/es00036a010 Ho, K. F., Lee, S. C., Cao, J. J., Chow, J. C., Watson, J. G., and Chan, C. K. (2006). Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of the Total Environment, 355(1-3), 276-287. doi: 10.1016/j.scitotenv.2005.03.013 Ho, K. F., Lee, S. C., Chow, J. C., and Watson, J. G. (2003). Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment, 37(8), 1023-1032. doi: 10.1016/s1352-2310(02)01028-2 Hsu, S.-C., Liu, S. C., Jeng, W.-L., Chou, C. C., Hsu, R.-T., Huang, Y.-T., and Chen, Y.-W. (2006). Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmospheric Environment, 40(28), 5393-5404. Hsu, S.-C., Liu, S. C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Lung, S.-C. C., . . . Tu, J.-Y. (2005). Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Science of the Total Environment, 347(1), 111-121. Hsu, S. C., Liu, S. C., Huang, Y. T., Chou, C. C., Lung, S., Liu, T. H., . . . Tsai, F. (2009). Long‐range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in northern Taiwan. Journal of Geophysical Research: Atmospheres (1984–2012), 114(D14). Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., . . . Prevot, A. S. H. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218-222. doi: 10.1038/nature13774 Kampa, M., and Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362-367. Kim, E., Hopke, P. K., and Edgerton, E. S. (2003). Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 53(6), 731-739. Kim, K.-H., Jahan, S. A., and Kabir, E. (2013). A review on human health perspective of air pollution with respect to allergies and asthma. Environment international, 59, 41-52. Kourtidis, K. A., Ziomas, I. C., Rappenglueck, B., Proyou, A., and Balis, D. (1999). Evaporative traffic hydrocarbon emissions, traffic CO and speciated HC traffic emissions from the city of Athens. Atmospheric Environment, 33(23), 3831-3842. doi: 10.1016/s1352-2310(98)00395-1 Kuo, C.-P., Liao, H.-T., Chou, C. C.-K., and Wu, C.-F. (2014). Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Science of the Total Environment, 472, 880-887. Kuo, C. Y., Chen, P. T., Lin, Y. C., Lin, C. Y., Chen, H. H., and Shih, J. F. (2008). Factors affecting the concentrations of PM10 in central Taiwan. Chemosphere, 70(7), 1273-1279. doi: 10.1016/j.chemosphere.2007.07.058 Larson, T. V., Covert, D. S., Kim, E., Elleman, R., Schreuder, A. B., and Lumley, T. (2006). Combining size distribution and chemical species measurements into a multivariate receptor model of PM2. 5. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D10). Lee, E., Chan, C. K., and Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33(19), 3201-3212. Lee, S., and Ashbaugh, L. (2007). Comparison of the MURA and an improved single-receptor (SIRA) trajectory source apportionment (TSA) method using artificial sources. Atmospheric Environment, 41(21), 4466-4481. doi: 10.1016/j.atmosenv.2007.01.043 Leuchner, M., and Rappengluck, B. (2010). VOC source-receptor relationships in Houston during TexAQS-II. Atmospheric Environment, 44(33), 4056-4067. doi: 10.1016/j.atmosenv.2009.02.029 Liao, H. T., Chou, C. C. K., Chow, J. C., Watson, J. G., Hopke, P. K., and Wu, C. F. (2015). Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution, 205, 121-130. doi: 10.1016/j.envpol.2015.05.035 Liao, H. T., Kuo, C.-P., Hopke, P. K., and Wu, C.-F. (2013). Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res, 13, 1253-1262. Lin, C. H., Wu, Y. L., Lai, C. H., Watson, J. G., and Chow, J. C. (2008). Air quality measurements from the Southern Particulate Matter Supersite in Taiwan. Aerosol and Air Quality Research, 8(3), 233-264. Lin, C. Y., Liu, S. C., Chou, C. C. K., Liu, T. H., Lee, C. T., Yuan, C. S., . . . Young, C. Y. (2004). Long-range transport of Asian dust and air pollutants to Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 15(5), 759-784. Lin, T. H. (2001). Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation. Atmospheric Environment, 35(34), 5873-5882. doi: 10.1016/s1352-2310(01)00392-2 Malm, W. C., Schichtel, B. A., and Pitchford, M. L. (2011). Uncertainties in PM2.5 Gravimetric and Speciation Measurements and What We Can Learn from Them. Journal of the Air & Waste Management Association, 61(11), 1131-1149. doi: 10.1080/10473289.2011.603998 Maykut, N. N., Lewtas, J., Kim, E., and Larson, T. V. (2003). Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology, 37(22), 5135-5142. doi: 10.1021/es030370y Norris, G., Duvall, R., Brown, S., and Bai, S. (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. (EPA/600/R-14/108; STI-910511-5594-UG, April). Washington, DC. Paatero, P. (1999). The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8(4), 854-888. doi: 10.2307/1390831 Paatero, P., and Hopke, P. K. (2003). Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1), 277-289. Paatero, P., and Hopke, P. K. (2009). Rotational tools for factor analytic models. Journal of Chemometrics, 23(2), 91-100. Paatero, P., and Tapper, U. (1994). Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126. Pedersen, M., Stayner, L., Slama, R., Sorensen, M., Figueras, F., Nieuwenhuijsen, M. J., . . . Dadvand, P. (2014). Ambient Air Pollution and Pregnancy-Induced Hypertensive Disorders A Systematic Review and Meta-Analysis. Hypertension, 64(3), 494-+. doi: 10.1161/hypertensionaha.114.03545 Prospero, J. M., Savoie, D. L., and Arimoto, R. (2003). Long-term record of nss-sulfate and nitrate in aerosols on Midway Island, 1981-2000: Evidence of increased (now decreasing?) anthropogenic emissions from Asia. Journal of Geophysical Research-Atmospheres, 108(D1), 11. doi: 10.1029/2001jd001524 Reff, A., Eberly, S. I., and Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air & Waste Management Association, 57(2), 146-154. Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837-3855. doi: 10.1016/1352-2310(96)00085-4 Seagrave, J., McDonald, J. D., Bedrick, E., Edgerton, E. S., Gigliotti, A. P., Jansen, J. J., . . . Zheng, M. (2006). Lung toxicity of ambient particulate matter from southeastern US sites with different contributing sources: relationships between composition and effects. Environmental Health Perspectives, 1387-1393. Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. John Wiley & Sons, Inc, New York. Shen, R. R., Schafer, K., Schnelle-Kreis, J., Shao, L. Y., Norra, S., Kramar, U., . . . Schmid, H. P. (2016). Characteristics and sources of PM in seasonal perspective - A case study from one year continuously sampling in Beijing. Atmospheric Pollution Research, 7(2), 235-248. doi: 10.1016/j.apr.2015.09.008 Shi, G. L., Tian, Y. Z., Han, S. Q., Zhang, Y. F., Li, X., Feng, Y. C., . . . Zhu, T. (2012). Vertical characteristics of carbonaceous species and their source contributions in a Chinese mega city. Atmospheric Environment, 60, 358-365. doi: 10.1016/j.atmosenv.2012.06.069 Siddique, N., and Waheed, S. (2014). Source apportionment using reconstructed mass calculations. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 49(4), 463-477. doi: 10.1080/10934529.2014.854687 Sillanpaa, M., Hillamo, R., Saarikoski, S., Frey, A., Pennanen, A., Makkonen, U., . . . Salonen, R. O. (2006). Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment, 40, S212-S223. doi: 10.1016/j.atmosenv.2006.01.063 Simon, H., Bhave, P. V., Swall, J. L., Frank, N. H., and Malm, W. C. (2011). Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmospheric Chemistry and Physics, 11(6), 2933-2949. doi: 10.5194/acp-11-2933-2011 Stanek, L. W., Brown, J. S., Stanek, J., Gift, J., and Costa, D. L. (2011). Air Pollution Toxicology-A Brief Review of the Role of the Science in Shaping the Current Understanding of Air Pollution Health Risks. Toxicological Sciences, 120, S8-S27. doi: 10.1093/toxsci/kfq367 Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., and Bo, Y. Y. (2001). Black carbon emissions in China. Atmospheric Environment, 35(25), 4281-4296. doi: 10.1016/s1352-2310(01)00179-0 Sturtz, T. M., Adar, S. D., Gould, T., and Larson, T. V. (2014). Constrained source apportionment of coarse particulate matter and selected trace elements in three cities from the multi-ethnic study of atherosclerosis. Atmospheric Environment, 84, 65-77. doi: 10.1016/j.atmosenv.2013.11.031 Taiwo, A. M., Beddows, D. C. S., Shi, Z. B., and Harrison, R. M. (2014). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of the Total Environment, 475, 29-38. doi: 10.1016/j.scitotenv.2013.12.076 Thurston, G. D., and Spengler, J. D. (1985). A QUANTITATIVE ASSESSMENT OF SOURCE CONTRIBUTIONS TO INHALABLE PARTICULATE MATTER POLLUTION IN METROPOLITAN BOSTON. Atmospheric Environment, 19(1), 9-25. doi: 10.1016/0004-6981(85)90132-5 Turpin, B. J., and Lim, H. J. (2001). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35(1), 602-610. doi: 10.1080/02786820152051454 Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., . . . Pekkanen, J. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Science of the Total Environment, 337(1-3), 147-162. doi: 10.1016/j.scitotenv.2004.06.018 Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., and Pekkanen, J. (2003). Source apportionment of urban ambient PM 2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615-623. Wang, J. Z., Ho, S. S. H., Ma, S. X., Cao, J. J., Dai, W. T., Liu, S. X., . . . Han, Y. M. (2016). Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment. Science of the Total Environment, 550, 961-971. doi: 10.1016/j.scitotenv.2016.01.138 Watson, J. G. (1984). OVERVIEW OF RECEPTOR MODEL PRINCIPLES. Journal of the Air Pollution Control Association, 34(6), 619-623. Watson, J. G., Chow, J. C., and Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584. Wimolwattanapun, W., Hopke, P. K., and Pongkiatkul, P. (2011). Source apportionment and potential source locations of PM2.5 and PM2.5-10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research, 2(2), 172-181. doi: 10.5094/apr.2011.022 Wu, C.-f., Larson, T. V., Wu, S.-y., Williamson, J., Westberg, H. H., and Liu, L.-J. S. (2007). Source apportionment of PM 2.5 and selected hazardous air pollutants in Seattle. Science of the Total Environment, 386(1), 42-52. Wu, Y.-S., Fang, G.-C., Lee, W.-J., Lee, J.-F., Chang, C.-C., and Lee, C.-Z. (2007). A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. Journal of hazardous materials, 143(1), 511-515. Xie, Y., and Berkowitz, C. M. (2007). The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas. Atmospheric Environment, 41(28), 5831-5847. doi: 10.1016/j.atmosenv.2007.03.049 Xie, Y. L., and Berkowitz, C. M. (2006). The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment, 40(17), 3070-3091. Yan, P., Zhang, R. J., Huan, N., Zhou, X. J., Zhang, Y. M., Zhou, H. G., and Zhang, L. M. (2012). Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmospheric Environment, 60, 121-131. doi: 10.1016/j.atmosenv.2012.05.050 Zeng, X., Xu, X. J., Zheng, X. B., Reponen, T., Chen, A. M., and Huo, X. (2016). Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. Environmental Pollution, 210, 346-353. doi: 10.1016/j.envpol.2016.01.025 Zhang, H. L., Wang, Y. G., Hu, J. L., Ying, Q., and Hu, X. M. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental research, 140, 242-254. doi: 10.1016/j.envres.2015.04.004 Zhao, W., Hopke, P. K., and Karl, T. (2004). Source identification of volatile organic compounds in Houston, Texas. Environmental Science & Technology, 38(5), 1338-1347. Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L. M., Kiang, C. S., Zhang, Y. H., and Cass, G. R. (2005). Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment, 39(22), 3967-3976. doi: 10.1016/j.atmosenv.2005.03.036 行政院環境保護署. (2010). 99年度光化學評估監測站操作品保例行性計畫. 行政院環境保護署. 行政院環境保護署. (2013). 101至102年度光化學評估監測站操作品保例行性計畫. 行政院環境保護署. 經濟部能源局各縣市汽車加油站汽油銷售統計月資料http://web3.moeaboe.gov.tw/ecw/populace/content/wfrmStatistics.aspx?type=2&menu_id=1300 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49253 | - |
| dc.description.abstract | 近年來,與空氣污染相關的議題備受大家關注,暴露到揮發性有機物 (volatile organic compounds, VOCs) 及細懸浮微粒 (fine particulate matter, PM2.5) 所造成的人體負面健康效應也被許多研究證實。為了能夠更精確地瞭解空氣污染物之來源,本研究採用正矩陣因子模式結合多重時間解析度受體模式及限縮受體模式在萬華測站進行全年度的實地探討研究。
本研究收集了四季的資料,在研究期間內收集了92份每日一筆的鐵氟龍濾紙及2208份每小時一筆的揮發性有機物資料。由於採樣設備的問題 (例如:幫浦的損壞),只收集到68份每日一筆的石英濾紙,損失的24筆的石英資料嘗試以含碳推估值代入。揮發性有機物資料由台灣環保署光化學監測站所下載,鐵氟龍濾紙以能量分散式螢光光譜儀 (Energy Dispersive X-Ray Fluorescence spectrometry, ED-XRF) 分析元素成分及以離子層析儀 (Ion Chromatography, IC) 分析離子成分,石英濾紙則以有機碳/元素碳分析儀分析有機碳及元素碳。 本研究掌握了部分環境意義資料,利用不同的限縮方法將解出的其中兩種污染源調整成與真實環境相符合的情形。另外,也獨立拉出原本存在各個指紋圖譜中的污染源,以了解其干擾程度。經過限縮步驟後,最後所得到的污染源指紋圖譜顯示萬華測站於整年度可能受到的污染源有8種,分別為天然氣洩漏 ( natural gas leakages)、溶劑的使用/工業製程 (solvent use/ industrial process)、受污染的海洋氣膠 (contaminated marine aerosol)、衍生性氣膠/長程傳輸 (secondary aerosol/ long-range transport)、油類燃燒 (oil combiustion)、交通排放源 (vehicular emission)、揮發性汽油排放源 (evaporative gasoline emission) 及土壤塵土逸散源 (soil dust)。 其中,揮發性有機化合物之主要貢獻來源為溶劑的使用/工業製程 (21%),而細懸浮微粒中最主要的貢獻來源為衍生性氣膠/長程傳輸 (48%)。 本研究掌握了全年度的揮發性有機物及細懸浮微粒資訊,更深入地探討四季間污染源的變化。由解出的八個污染源可以清楚地看到季節間變異,揮發性有機物及細懸浮微粒的整體季節趨勢由高到低依序為: 2014年的冬天、2015年的春天、2014年的秋天及2015年的夏天。我們可以利用這些資訊,瞭解各污染源的好發時期,並提供政府作為污染源管制之成效評估及日後擬定防範措施的參考依據。 | zh_TW |
| dc.description.abstract | Exposure to air pollutants such as volatile organic compounds (VOCs) and fine particulate matter (PM2.5), were found to be associated with acute and chronic adverse health effects, including allergy, respiratory and cardiovascular diseases. The feasibility of combining the multiple time resolution data of VOCs and PM2.5 had been mentioned in published paper for increasing the accuracy of source identification. This was a field study applying multiple time resolution data of hourly VOCs and 24-h PM2.5 with the Positive Matrix Factorization (PMF) model for source apportionment.
The data were collected in four seasons. During the study periods, 92 daily Teflon PM2.5 samples and 2208 hourly VOC measurements were collectd. Due to the issues of equipments (e.g. pump falure), only 68 quartz filter samples were obtained. Others 24 were estimated based on measured species on Teflon filtes. VOCs data were monitored by the Wanhua Photochemical Assessment Monitoring Station (PAMS). Teflon filters were analyzed by Energy Dispersive X-Ray Fluorescence spectrometry (ED-XRF) and Ion Chromatography (IC). Quartz filters were analyzed by Thermal Optical Carbon Analyzer for OC and EC. With some prior information, we used different procedures to constrain two sources toward realistic environment, and add an exsisted source for recognizing the impacts. Finally,eight factors were identified as: natural gas leakage, solvent use/ industrial process, contaminated marine aerosol, secondary aerosol/ long-range transport, oil combustion, vehicular emission, evaporative gasoline emission, and soil dust. The results showed that solvent use/ industrial process was the largest contributor (21%) to VOCs mass concentration, while the largest contributor to PM2.5 mass concentration was secondary aerosol/ long-range transport (48%). The seasonal variations of souce contributions were analyzed in this study. The total concentration of VOCs and PM2.5 from the highest to lowest were: winter 2014, spring 2015, autumn 2014, and summer 2015. The serious emission season of each source was recognized in this study and can be used as references for evaluating control efficiencies and developing prevention strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:20:57Z (GMT). No. of bitstreams: 1 ntu-105-R03844010-1.pdf: 5852704 bytes, checksum: f3567a3f940412cbbbd4c5c8b52aa7dd (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Methods 6 2.1 Introduction of Sampling Site 6 2.2 Data Collection and Chemical Analysis 7 2.3 Mass Closure 10 2.4 Evaluating the Effects of Adding OC and EC Data 11 Chapter 3 Model Descriptions 13 3.1 Receptor Modeling 13 3.2 Quality Assurance and Control of Data 16 3.3 Missing Mass 16 3.4 Determination of Sources Numbers 17 3.5 Profile Interpretation 18 3.6 Model Constraints 19 3.7 Conditional Probability Function 21 Chapter 4 Results and Discussion 22 4.1 Descriptive Analysis 22 4.1.1 Double Counting 22 4.1.2 Collinearity 23 4.2 Base Model Runs 23 4.2.1 Determination of Sources Numbers 24 4.2.2 Source Identification 24 4.2.3 Effects of OC/EC Measurements 28 4.3 Constraint Model Runs 31 4.3.1 Soil Dust 31 4.3.2 Vehicular Emission 33 4.3.3 Natural gas leakage 33 4.4 Evaluations of Constraints 34 4.5 Source Contribution and Seasonal Variation 34 4.6 Effects of Using Multiple Time Resolution Data with VOCs and PM2.5 38 4.7 Study Limitations 40 Chapter 5 Conclusions and Recommendations 41 References 63 Appendix 72 Appendix A: Detailed information of VOCs included in this study 72 Appendix B: Frequency distributions of scaled residuals obtained from ME-2. 73 Appendix C: The 72-h back trajectory of extreme episodes in Factor 4 at Wanhua monitoring site by NOAA HYDPLIT model. 76 Appendix D: Hourly variation of total VOCs (mean±std) in each source at Wanhua monitoring site (Scenario A). 80 Appendix E: Source profiles of Scenario B plotted as mass concentration (gray bar) and explained variation (black circle) of: a) VOCs and b) PM2.5 species at Wanhua monitoring site. 81 Appendix F Deduction of estimating OC and EC 82 Appendix F-1 Results of multiple regressions using Equation (21) for data of Wanhua monitoring site… 84 Appendix F-2 Scatter plots of: a) measured OC and measured EC, b) measured OC and estimated OC, and c) measured EC and estimated EC. 85 Appendix G: Source profiles of Scenario C plotted as mass concentration (gray bar) and explained variation (black circle) of: a) VOCs and b) PM2.5 species at Wanhua monitoring site. 86 Appendix H: Time series plot for normalized concentration of each factor presented by seasons at Wanhua monitoring site. 87 Appendix I: Source profiles of Scenario C_S plotted as mass concentration (gray bar) and explained variation (black circle) of: a) VOCs and b) PM2.5 species at Wanhua monitoring site. 91 Appendix J: Source profiles of Scenario C_SV plotted as mass concentration (gray bar) and explained variation (black circle) of: a) VOCs and b) PM2.5 species at Wanhua monitoring site. 92 Appendix K: Source profiles of Scenario D plotted as mass concentration (gray bar) and explained variation (black circle) of VOCs species at Wanhua monitoring site. 93 | |
| dc.language.iso | en | |
| dc.subject | 空氣污染 | zh_TW |
| dc.subject | 正矩陣因子解析 | zh_TW |
| dc.subject | 污染源解析 | zh_TW |
| dc.subject | 限縮模式 | zh_TW |
| dc.subject | 受體模式 | zh_TW |
| dc.subject | constrain | en |
| dc.subject | PMF | en |
| dc.subject | air pollution | en |
| dc.subject | receptor modeling | en |
| dc.subject | source apportionment | en |
| dc.title | 應用限縮正矩陣因子模式結合多重時間解析度數據推估細懸浮微粒及揮發性有機物之污染來源:實地研究探討 | zh_TW |
| dc.title | Applying a Constrained Positive Matrix Factorization Model with Multiple Time Resolution Data in a Field Study for Source Apportionment of PM2.5 and VOCs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡詩偉,邱嘉斌(justandine@gmail.com),周崇光 | |
| dc.subject.keyword | 污染源解析,受體模式,正矩陣因子解析,限縮模式,空氣污染, | zh_TW |
| dc.subject.keyword | source apportionment,receptor modeling,PMF,constrain,air pollution, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201603341 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
