Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音
dc.contributor.authorZheng-Hau Liuen
dc.contributor.author柳政豪zh_TW
dc.date.accessioned2021-06-15T11:20:53Z-
dc.date.available2016-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation1. Robak T, Wierzbowska A. Current and emerging therapies for acute myeloid leukemia. Clinical therapeutics 2009; 31 Pt 2: 2349-2370.
2. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. The New England journal of medicine 1999; 341(14): 1051-1062.
3. Almeida AM, Ramos F. Acute myeloid leukemia in the older adults. Leukemia research reports 2016; 6: 1-7.
4. Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics 2009 Oct; 10(10): 1657-1674.
5. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011 Feb 10; 29(5): 487-494.
6. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. Journal of hematology & oncology 2011; 4: 13.
7. Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 2012 Oct; 26(10): 2176-2185.
8. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 2002 Nov; 16(11): 2185-2189.
9. Markovic A, MacKenzie KL, Lock RB. FLT-3: a new focus in the understanding of acute leukemia. The international journal of biochemistry & cell biology 2005 Jun; 37(6): 1168-1172.
10. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002 Sep 1; 100(5): 1532-1542.
11. Smith CC, Wang Q, Chin C-S, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012 05/10/print; 485(7397): 260-263.
12. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Molecular cancer therapeutics 2011 Dec; 10(12): 2298-2308.
13. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011 Jul 1; 29(19): 2660-2666.
14. Grullich C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 2014; 201: 207-214.
15. Wakelee H GS, Engelman J, et al. A phase Ib/II study of XL184(BMS907351) with and without erlotinib (E) in patients (pts) with non-small cell lung cancer (NSCLC). Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010; 28(3017).
16. Choueiri TK, Vaishampayan U, Rosenberg JE, Logan TF, Harzstark AL, Bukowski RM, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2013 Jan 10; 31(2): 181-186.
17. Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC, et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012 May 31; 119(22): 5133-5143.
18. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006 Nov 15; 108(10): 3262-3270.
19. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S, et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011 Mar 24; 117(12): 3286-3293.
20. Levis M, Brown P, Smith BD, Stine A, Pham R, Stone R, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood 2006 Nov 15; 108(10): 3477-3483.
21. Clark JJ, Cools J, Curley DP, Yu JC, Lokker NA, Giese NA, et al. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 2004 Nov 1; 104(9): 2867-2872.
22. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012 May 10; 485(7397): 260-263.
23. Treiber DK, Shah NP. Ins and outs of kinase DFG motifs. Chemistry & biology 2013 Jun 20; 20(6): 745-746.
24. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nature reviews Cancer 2009 Jan; 9(1): 28-39.
25. Pauwels D, Sweron B, Cools J. The N676D and G697R mutations in the kinase domain of FLT3 confer resistance to the inhibitor AC220. Haematologica 2012 Nov; 97(11): 1773-1774.
26. Fathi AT, Chen YB. Treatment of FLT3-ITD acute myeloid leukemia. American Journal of Blood Research 2011; 1(2): 175-189.
27. Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, et al. Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer research 2011 Jul 1; 71(13): 4696-4706.
28. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD, et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer research 2004 Sep 15; 64(18): 6385-6389.
29. Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America 2015 Sep 29; 112(39): E5381-5390.
30. Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015 Dec; 29(12): 2390-2392.
31. Fischer Lindahl K. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics 1997; 46(1): 53-62.
32. Xie SZ, Hao R, Zha XQ, Pan LH, Liu J, Luo JP. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways. Carbohydrate polymers 2016 Aug 1; 146: 292-300.
33. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008 May; 42(2): 145-151.
34. Gao Q, Ma LL, Gao X, Yan W, Williams P, Yin DP. TLR4 mediates early graft failure after intraportal islet transplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2010 Jul; 10(7): 1588-1596.
35. Zhao Y, Liu Q, Yang L, He D, Wang L, Tian J, et al. TLR4 inactivation protects from graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Cellular and Molecular Immunology 2013 Mar; 10(2): 165-175.
36. Farrar CA, Kupiec-Weglinski JW, Sacks SH. The Innate Immune System and Transplantation. Cold Spring Harbor Perspectives in Medicine 2013 Oct; 3(10).
37. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000 Dec 1; 96(12): 3907-3914.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49251-
dc.description.abstractFLT3是一個表現在造血幹細胞與造血前驅細胞的一個接收器,其作用是調節細胞增生與分化。而在臨床的研究發現,大約三分之一的急性骨髓性白血病病患都帶有FLT3的突變,其中最主要的突變就是FLT3-ITD(內部串聯重複)。帶有FLT3-ITD突變的急性骨髓性白血病病患往往預後比較差、高復發風險且有較低的存活率;由於FLT3-ITD在白血病的發展上扮演驅動突變(driver mutation)的角色,因此FLT3儼然成為一個發展治療藥物的重要標的。在實驗室先前的研究發現,一種抑制MET、VEGFR2、RET、KIT及FLT3的小分子激酶抑制藥物;cabozantinib,能有效的抑制帶有FLT3-ITD的急性骨髓性白血病細胞株的細胞生長。為了確認此藥物在活體實驗中,對於帶有FLT3-ITD的急性骨髓性白血病細胞株有選擇性的毒殺。我們採用了MV4-11, Molm13, U937, OCI-AML3四種皮下注射的異種移植動物模型,我們發現只有帶有FLT3-ITD的細胞株MV4-11, Molm13會受到藥物影響而減少其腫瘤生長,並且改善其異種移植小鼠存活率。
然而,對於小分子標靶藥物治療最大的挑戰還是抗藥性的問題;因此,研究cabozantinib可能遇到的抗藥性問題是必須的。在先前的文獻指出,急性骨髓性白血病若發生了酪氨酸激酶結構域(TKD)的結構突變,不同的突變位點會對不同藥物有不一樣的感受性,甚至會有抗藥性的問題。為了探究這個問題我們選用了四種常見的TKD突變包括F691L、N676D、D835Y、Y842H,我們利用定點突變將帶有FLT3-ITD的pEGFP N3載體放入TKD的點突變;接著利用DNA定序來確認所有序列正確且有成功完成點突變。利用電穿孔的方式將FLT3-ITD-TKD 突變送入32D細胞株後,利用RNA的萃取,並反轉錄成cDNA,然後送定序確認其序列。利用MTS assay來測試藥物對細胞的IC50,結果我們發現在TKD1點突變(F691L、N676D)的細胞,比起在TKD2點突變(D835Y、Y842H)的細胞,對於cabozantinib仍具有感受性。我們也利用了西方墨點法來確認cabozantinib對於不同的TKD突變的訊息傳遞抑制效果;我們發現不同的TKD突變會有不同的藥物感受性。
最後,我們建立FLT3-ITD 32D誘導的急性白血病動物模型。在予以10mg/kg cabozantinib七天後,所使用的C3H/HeNCrNarl 小鼠不會有體重的降低或其他不適症狀。運用鼠尾靜脈注射方式,將帶有各種FLT3-ITD的32D細胞注入鼠尾靜脈。我們發現十二隻中有七隻的C3H/HeN小鼠有成功誘導出急性骨髓性白血病,發病的時間約七十到一百天。
本論文顯示除了細胞實驗中cabozantinib能有效抑制具有FLT3-ITD細胞的生長之外,也能在動物實驗中得到類似的結果。另外,也建立一個鼠尾靜脈注射帶有FLT3-ITD的32D細胞株誘導AML的實驗動物模型,發病率約60%。
zh_TW
dc.description.abstractFLT3 is expressed by hematopoietic stem cells and progenitor cells and its function is to regulate proliferation and differentiation. In clinical studies, about one third of acute myeloid leukemia (AML) patients have mutation on FLT3, and the majority of mutation on FLT3 is FLT3-internal tandem duplication (ITD). Patients with FLT3/ITD have poor prognosis, high risk of relapse and decreased survival. FLT3-ITD is a driver mutation, so FLT3 is considered to be a target for therapies. In our previous study, we found that cabozantinib , a small molecule kinase inhibiter for MET, VEGFR2, RET ,KIT, and FLT3, is an effective inhibitor for FLT3/ITD AML cell growth both in vivo and in vitro. To confirm the selective cytotoxicity to FLT3/ITD AML cell line of cabozantinib in vivo, we used MV4-11, Molm13, U937, OCI-AML3 xenograft model by subcutaneous injection into nude mice. We found that only AML cell line harboring FLT3/ITD had decreased tumor growth and improved survival after cabozantinib treatment.
However, emergence of drug resistance after small molecule kinase inhibitor treatment is a big challenge for treatment. That is the reason why studying on drug resistance of cabozantinib is needed. In present study, we focus on the AML cells that express various FLT3-tyrosine kinase domain (TKD) mutations, and found that they had various drug responses and might have drug resistance to tyrosine kinase inhibitor. We chose four common TKD mutations including F691L, N676D, D835Y and Y842H in our study. Tyrosine kinase domain mutations on p-EGFP N3-FLT3/ITD plasmid were introduced by site-directed mutagenesis and then confirmed that all FLT3/ITD and tyrosine kinase domain mutation base were correct by DNA sequencing. We transfected FLT3/ITD-TKD mutation to 32D cells by using electroporation. FLT3/ITD-TKD expression was checked with RT-PCR and cDNA sequencing. By using MTS assay, we found that mutations on tyrosine kinase domain 1 (F691L, N676D) had better response to cabozantinib than those mutations on tyrosine kinase domain 2 (D835Y, Y842H ). We also used Western blot to confirm the efficacy of cabozantinib on various TKD mutations. We found that various TKD mutation had different response to cabozantinib, and those molecule associated with downstream signaling pathway of FLT3 were inhibited in higher concentration of cabozantinib treatment.
Finally, we tried to build 32D animal model for AML. First, we found that the weight of C3H/HeNCrNarl mice were not affected after 10 mg/kg cabozantinib treatment for seven days. Subsequently, we used tail vein injection to test when the 32D cells could induce leukemia phenotype in C3H/HeN mice, and we found seven of twelve C3H/HeN mice had leukemia phenotype. Their course of disease was about 70 to 100 days.
In conclusion, cabozantinib is effective to inhibit tumor growth of FLT3-ITD AML cell line in vitro and in vivo. We also built a FLT3-ITD-TKD 32D animal model for AML by tail vein injection. Their incidence is about 60%.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:20:53Z (GMT). No. of bitstreams: 1
ntu-105-R03424021-1.pdf: 4178313 bytes, checksum: 53c2b526d0180c64d7693e48c3abb794 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目 錄
誌謝 I
目錄 II
圖目錄 IV
附圖目錄 V
附表目錄 VI
縮寫表 VII
中文摘要 VIII
英文摘要 X
第一章 緒論 1
1.1.急性骨髓性白血病 1
1.2.急性骨髓性白血病的治療 1
1.3. FLT3-ITD(FMS-like tyrosine kinase 3-internal tandem duplication) 1
1.4. Cabozantinib (XL184) 2
1.5. Tyrosine kinase inhibitor(TKI)的抗藥性問題 2
1.6. TKD與TKI的結構與結合 3第二章 研究目的 4
第三章 材料與方法 5
3.1.材料 5
3.1.1. 細胞 5
3.1.2. 實驗動物 5
3.1.3. 儀器設備 5
3.1.4. 藥品 6
3.1.5. 抗體 8
3.1.6. 試劑組 8
3.1.7. 試劑藥品配置 8
3.2. 方法 10
3.2.1. 細胞培養 10
3.2.2. 定點點突變 10
3.2.3. 電穿孔 10
3.2.4. 細胞抑殺試驗(MTS assay) 11
3.2.5. RNA萃取 11
3.2.6. 細胞蛋白質製備 11
3.2.7. 蛋白質定量 12
3.2.8. 西方點墨法 12
3.2.9. 小鼠飼養 12
3.2.10 裸鼠皮下異種移植 12
3.2.11 C3H實驗動物模型 13
3.2.12統計方法 13
第四章 實驗結果 14
4.1 在in vivo模式中對於Cabozantinib對於FLT3-ITD AML細胞株之腫瘤有選擇性的抑制效果 14
4.2.製備帶有FLT3-ITD及FLT3-ITD-TKD mutation的32D細胞並確認其表現 15
4.3在in vitro的實驗中觀察到不同的TKD突變會影響對於cabozantinib的感受性
16
4.4 建立32D的AML實驗動物模型 17
第五章 討論 19
第六章 未來展望 22
第七章 參考文獻 23
圖 28
附圖 49
附表 54
dc.language.isozh-TW
dc.subject急性骨髓性白血病zh_TW
dc.subject32Dzh_TW
dc.subjectFLT3-ITDzh_TW
dc.subjectTKD突變zh_TW
dc.subjectcabozantinibzh_TW
dc.subjectAcute myeloid leukemiaen
dc.subject32Den
dc.subjectTKD mutationen
dc.subjectFLT3-ITDen
dc.subjectcabozantiniben
dc.title探討Cabozantinib在in vitro及in vivo針對不同FLT3 突變的效果zh_TW
dc.titleIn vitro and In vivo study of the Efficacy of Cabozantinib on various FLT3 mutationsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡忠怡,郭遠燁,歐大諒,顧雅真
dc.subject.keyword急性骨髓性白血病,cabozantinib,FLT3-ITD,TKD突變,32D,zh_TW
dc.subject.keywordAcute myeloid leukemia,cabozantinib,FLT3-ITD,TKD mutation,32D,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201603069
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved