請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49245
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 游景雲 | |
dc.contributor.author | Kuan-wen Chou | en |
dc.contributor.author | 周冠汶 | zh_TW |
dc.date.accessioned | 2021-06-15T11:20:40Z | - |
dc.date.available | 2019-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-18 | |
dc.identifier.citation | Celeste, A. B., & Billib, M. (2012). Improving implicit stochastic reservoir optimization models with long-term mean inflow forecast. Water resources management, 26(9), 2443-2451.
Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. Cloke, H. L., & Pappenberger, F. (2009). Ensemble flood forecasting: a review. Journal of Hydrology, 375(3), 613-626. Day, G. N. (1985). Extended streamflow forecasting using NWSRFS. Journal of Water Resources Planning and Management, 111(2), 157-170. Ding, W., Zhang, C., Peng, Y., Zeng, R., Zhou, H., & Cai, X. (2015). An analytical framework for flood water conservation considering forecast uncertainty and acceptable risk. Water Resources Research, 51(6), 4702-4726. Faber, B. A., & Stedinger, J. R. (2001). Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. Journal of Hydrology, 249(1), 113-133. Franz, K. J., Hartmann, H. C., Sorooshian, S., & Bales, R. (2003). Verification of National Weather Service ensemble streamflow predictions for water supply forecasting in the Colorado River basin. Journal of Hydrometeorology, 4(6), 1105-1118. Jeong, D. I., & Kim, Y. O. (2005). Rainfall‐runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological processes, 19(19), 3819-3835. Karamouz, M., Imen, S., & Nazif, S. (2012). Development of a demand driven hydro-climatic model for drought planning. Water resources management, 26(2), 329-357. Kim, Y. O., Jeong, D., & Ko, I. H. (2006). Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. Journal of Hydrologic Engineering, 11(6), 578-588. Labadie, J. W. (2004). Optimal operation of multireservoir systems: state-of-the-art review. Journal of water resources planning and management, 130(2), 93-111. Lee, J. H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water resources research, 43(11). Loucks, D. P., Van Beek, E., Stedinger, J. R., Dijkman, J. P., & Villars, M. T. (2005). Water resources systems planning and management: an introduction to methods, models and applications. Paris: Unesco. Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Marglin, S. A., Fair, G. M., ... & Fiering, M. B. (1962). Design of water-resource systems. Najafi, M. R., Moradkhani, H., & Piechota, T. C. (2012). Ensemble streamflow prediction: Climate signal weighting methods vs. climate forecast system reanalysis. Journal of Hydrology, 442, 105-116. Nandalal, K. D. W., & Bogardi, J. J. (2007). Dynamic programming based operation of reservoirs: applicability and limits. Cambridge university press. Roefs, T. G., & Bodin, L. D. (1970). Multireservoir operation studies. Water Resources Research, 6(2), 410-420 Shapiro, A., & Philpott, A. (2007). A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/ashapiro/publications.html, 17. Shiau, J. T., & Lee, H. C. (2005). Derivation of optimal hedging rules for a water-supply reservoir through compromise programming. Water resources management, 19(2), 111-132. Shih, J. S., & ReVelle, C. (1995). Water supply operations during drought: A discrete hedging rule. European journal of operational research, 82(1), 163-175. Simonovic, S. P., & Srinivasan, R. (1993). Explicit stochastic approach for planning the operations of reservoirs for hydropower production. IAHS PUBLICATION, 349-349. Stedinger, J., Faber, B., & Lamontagne, J. (2013). Developments in stochastic dynamic programming for reservoir operation optimization. In World Environmental and Water Resources Congress (pp. 1266-1278). Thirel, G., Rousset-Regimbeau, F., Martin, E., & Habets, F. (2008). On the impact of short-range meteorological forecasts for ensemble streamflow predictions. Journal of Hydrometeorology, 9(6), 1301-1317. Tu, M. Y., Hsu, N. S., & Yeh, W. W. G. (2003). Optimization of reservoir management and operation with hedging rules. Journal of Water Resources Planning and Management, 129(2), 86-97. Wurbs, R. A. (1993). Reservoir-system simulation and optimization models. Journal of water resources planning and management, 119(4), 455-472. Yeh, W. W. G. (1985). Reservoir management and operations models: A state‐of‐the‐art review. Water resources research, 21(12), 1797-1818. You, G. J. Y. (2013). Hedging Rules for the Operation of Lake Okeechobee in Southern Florida. JAWRA Journal of the American Water Resources Association, 49(5), 1179-1197. You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 1. A theoretical analysis. Water resources research, 44(1). 朱容練, 劉俊志, 林士堯, 朱吟晨, 陳韻如 & 陳永明 (2014). 乾旱監測與預警系統建置. 國災災害防救科技中心103年技術報告. NCDR 103-T07. 林郁雯 (2015). 水庫排砂即時操作之研究. 碩士論文. 國立臺灣大學土木工程學研究所, 台北. 黃怡綾 (2014). 基於入流系集預報之水庫預放水防洪調度操作. 碩士論文. 國立臺灣大學土木工程學研究所, 台北. 經濟部水利署北區水資源局 (2006). 經濟部水利署北區水資源局98年度年報. 經濟部水利署北區水資源局 (2013). 石門水庫運用要點. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49245 | - |
dc.description.abstract | 臺灣水資源的利用主要仰賴於水庫的配水策略。雖然臺灣的降雨量十分充沛,但因為地形導致時間空間降雨不均,而使得大部份的水無法被利用。特別是在乾季,更是難以同時滿足下游用水需求與儲存水資源。因此,為了使水資源的分配更有效率,入流預報日益發展蓬勃,並且運用於水庫操作上,找尋使缺水清況得以減緩的操作方式。值得一提的是,國家災害防救中心為石門水庫開發了系集入流預報的產品,其可以運用於水庫操作,有助於擬定預報期間內的放水策略。本研究主要目的為建立結合系集入流預報與序率最佳化以進行水庫操作的架構,其中,本研究採用的序率最佳化為隱式與顯式,並且將其運用在石門水庫2009年的實際操作。經過模擬,這兩種模式因其特性所呈現的操作結果產生了些微差異。尤其在面臨乾旱情況時,隱式序率最佳化傾向於分散入流特性的分布,再為預報期間決定出較為保守的決策。而顯式序率最佳化則是採納了預報所有可能的路徑,做出較具信心的放水策略。因此,若預報的準確度得以大幅提升,則顯式序率最佳化可以被水庫操作者採納;反之,若預報的可靠度較低,隱式序率最佳化可以處理較難以定義的不確定性。 | zh_TW |
dc.description.abstract | In Taiwan, utilization of water resources mainly relies on reservoir. Although the precipitation is abundant, lots of water is unavailable due to steep landform and spatio-temporally unequal distribution of rainfall. Especially in dry season, it is hard to satisfy the demand and conserve water. To allocate limited water resources effectively, inflow prediction has been developed and applied to reservoir operation for mitigating water shortage. National Science and Technology Center for Disaster Reduction (NCDR) produced ensemble streamflow prediction (ESP) for Shihmen Reservoir. It could be helpful information for determining release strategy in the following period with prediction. This study provides a framework for combining ESP with stochastic optimization, which contains implicit and explicit stochastic optimization (ISO and ESO), is applied to practical operation with for Shihmen Reservoir in 2009. Because of the characteristics of ISO and ESO, the release strategy decided by two models are presented as slight difference. While confronting drought, ISO tends to disperse the distribution of inflow in the predicted period and determine a conservative decision; on the contrary, ESO absorbs the traits of prediction and makes the policy with confidence. Therefore, ESO model could be adopted to the process of decision making if the precision of inflow prediction is promoted; on the other hand, ISO model could be used to deal with indefinite uncertainty if the reliability of prediction is insufficient. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:20:40Z (GMT). No. of bitstreams: 1 ntu-105-R03521319-1.pdf: 4948631 bytes, checksum: 7cdadb4d62529e839b5a530b928b1792 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Overview: distribution and utilization of water resources 1 1.2 Purpose 4 Chapter 2 Literature Review 8 2.1 Reservoir operation and stochastic optimization 8 2.2 Ensemble streamflow prediction 11 2.3 Hedging Rule 12 Chapter 3 Methodology 15 3.1 Hedging Rule 17 3.2 Stochastic optimization 18 3.2.1 Continuity equation 18 3.2.2 Evaluation for shortage 19 3.2.3 Objective function and constraints 19 3.2.4 ISO model 21 3.2.5 ESO model 23 3.3 Practical operation 26 Chapter 4 Case Study 29 4.1 Shihmen Reservoir 29 4.2 ESP in 2009 31 4.2.1 Analysis of historical inflow and rainfall 31 4.2.2 The inflow of ESP by regression 34 4.3 Results of stochastic optimization 40 4.3.1 Historical inflow as input 41 4.3.2 Original prediction as input 43 4.3.3 Unbiased prediction as input 55 4.3.4 The comparison of results 66 Chapter 5 Conclusion and Recommendation 68 5.1 Conclusion 68 5.2 Recommendation 69 REFERENCES 71 | |
dc.language.iso | en | |
dc.title | 運用序率動態規劃與系集入流預報於水庫枯旱供水策略擬定 | zh_TW |
dc.title | Reservoir Operation during Drought by Applying Ensemble Streamflow Prediction and Stochastic Dynamic Programming | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪志銘,孫建平,張駿暉,許少瑜 | |
dc.subject.keyword | 水資源,水庫操作,乾旱,序率最佳化,系集入流預報, | zh_TW |
dc.subject.keyword | Water resources,Reservoir operation,Drought,Stochastic optimization,Ensemble streamflow prediction, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201602965 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。