請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49244完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭貽生 | |
| dc.contributor.author | Min-Che Hsieh | en |
| dc.contributor.author | 謝旻哲 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:20:38Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | Arimura, G., Garms, S., Maffei, M., Bossi, S., Schulze, B., Leitner, M., Mithofer, A., and Boland, W. (2008). Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227: 453-464.
Babitha, K.C., Ramu, S.V., Pruthvi, V., Mahesh, P., Nataraja, K.N., and Udayakumar, M. (2013). Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22: 327-341. Besseau, S., Li, J., and Palva, E.T. (2012). WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63: 2667-2679. Cai, M., Qiu, D., Yuan, T., Ding, X., Li, H., Duan, L., Xu, C., Li, X., and Wang, S. (2008). Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31: 86-96. Champion, A., Hebrard, E., Parra, B., Bournaud, C., Marmey, P., Tranchant, C., and Nicole, M. (2009). Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas. Mol Plant Pathol 10: 471-485. Ciolkowski, I., Wanke, D., Birkenbihl, R.P., and Somssich, I.E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68: 81-92. de Pater, S., Greco, V., Pham, K., Memelink, J., and Kijne, J. (1996). Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24: 4624-4631. Ding, Z.J., Yan, J.Y., Xu, X.Y., Li, G.X., and Zheng, S.J. (2013). WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J 76: 825-835. Ding, Z.J., Yan, J.Y., Xu, X.Y., Yu, D.Q., Li, G.X., Zhang, S.Q., and Zheng, S.J. (2014). Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J 79: 13-27. Duan, M.R., Nan, J., Liang, Y.H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L., Li, Y., and Su, X.D. (2007). DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 35: 1145-1154. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199-206. Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K., and Somssich, I.E. (1999). Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18: 4689-4699. Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F.M., and Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144: 367-379. Goossens, J., Fernandez-Calvo, P., Schweizer, F., and Goossens, A. (2016). Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673-689. Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki, E., Grundler, F., Inze, D., Beeckman, T., and Gheysen, G. (2008). A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol 148: 358-368. Grunewald, W., De Smet, I., De Rybel, B., Robert, H.S., van de Cotte, B., Willemsen, V., Gheysen, G., Weijers, D., Friml, J., and Beeckman, T. (2013). Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep 14: 1136-1142. Guo, Y., and Gan, S. (2005). Leaf Senescence: Signals, Execution, and Regulation. Curr Top Dev Biol 71: 83-112. Hao, D., Ohme-Takagi, M., and Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273: 26857-26861. Hu, Y., Dong, Q., and Yu, D. (2012). Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185-186: 288-297. Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., and Yu, D. (2013). Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74: 730-745. Huangfu, J., Li, J., Li, R., Ye, M., Kuai, P., Zhang, T., and Lou, Y. (2016). The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. Int J Mol Sci 17. Jiang, Y., and Deyholos, M.K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69: 91-105. Jiang, Y., Liang, G., Yang, S., and Yu, D. (2014). Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26: 230-245. Jing, S., Zhou, X., Song, Y., and Yu, D. (2009). Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58: 181-190. Journot-Catalino, N., Somssich, I.E., Roby, D., and Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302. Kim, K.C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20: 2357-2371. Lagace, M., and Matton, D.P. (2004). Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219: 185-189. Li, J., Besseau, S., Toronen, P., Sipari, N., Kollist, H., Holm, L., and Palva, E.T. (2013). Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200: 457-472. Maeo, K., Hayashi, S., Kojima-Suzuki, H., Morikami, A., and Nakamura, K. (2001). Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem 65: 2428-2436. Mangelsen, E., Kilian, J., Berendzen, K.W., Kolukisaoglu, U.H., Harter, K., Jansson, C., and Wanke, D. (2008). Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9: 194. Mao, P., Duan, M., Wei, C., and Li, Y. (2007). WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48: 833-842. Miao, Y., Laun, T., Zimmermann, P., and Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55: 853-867. Nakano, T., Suzuki, K., Ohtsuki, N., Tsujimoto, Y., Fujimura, T., and Shinshi, H. (2006). Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119: 407-413. Pandey, S.P., and Somssich, I.E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiol 150: 1648-1655. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P., and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5: 308-316. Qiao, Z., Li, C.L., and Zhang, W. (2016). WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Mol Biol 91: 53-65. Rakwal, R., Yang, G., and Komatsu, S. (2004). Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol Biol Rep 31: 113-119. Sheikh, A.H., Eschen-Lippold, L., Pecher, P., Hoehenwarter, W., Sinha, A.K., Scheel, D., and Lee, J. (2016). Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana. Front Plant Sci 7: 61. Skibbe, M., Qu, N., Galis, I., and Baldwin, I.T. (2008). Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20: 1984-2000. Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., and Chen, Y.F. (2015). WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167: 1579-1591. Turck, F., Zhou, A., and Somssich, I.E. (2004). Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell 16: 2573-2585. van Verk, M.C., Pappaioannou, D., Neeleman, L., Bol, J.F., and Linthorst, H.J. (2008). A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146: 1983-1995. Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2: e123. Wang, L.-J., and Li, S.-H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science 170: 685-694. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., and Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28: 21-30. Xie, Z., Zhang, Z.L., Zou, X., Yang, G., Komatsu, S., and Shen, Q.J. (2006). Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46: 231-242. Yamasaki, K., Kigawa, T., Watanabe, S., Inoue, M., Yamasaki, T., Seki, M., Shinozaki, K., and Yokoyama, S. (2012). Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J Biol Chem 287: 7683-7691. Yang, Y.X., Ahammed, G.J., Wu, C., Fan, S.Y., and Zhou, Y.H. (2015). Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses. Curr Protein Pept Sci 16: 450-461. Zentella, R., Zhang, Z.L., Park, M., Thomas, S.G., Endo, A., Murase, K., Fleet, C.M., Jikumaru, Y., Nambara, E., Kamiya, Y., and Sun, T.P. (2007). Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19: 3037-3057. Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, H.W., Zhang, J.S., and Chen, S.Y. (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6: 486-503. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49244 | - |
| dc.description.abstract | 植物有一群特有的WRKY轉錄因子,作為植物回應生物逆境或非生物逆境之用,阿拉伯芥WRKY54(AT2G40750)隸屬於WRKY家族第三族群的成員,具有一個保守性的WRKY 區及C2HC形式的鋅指,以辨認植物基因組上特異區段W-box(TTGACC/T)序列,WRKY54參與在植物體水楊酸的訊息傳導途徑,可能作為系統性防禦反應之用。關於WRKY轉錄因子與W-box及其邊緣序列(flanking sequence)是否影響轉錄因子的結合,機制仍不清楚,本研究針對邊緣序列影響WRKY轉錄因子辨認進行深入探討。
藉由親和性管柱層析及粒徑排阻層析,可取得純化的WRKY54 DNA結合區重組蛋白質;以動態光散射分析確認WRKY54 DNA結合區在溶液中為單體(monomer) ,分子量為59 kDa;利用螢光電泳遷移實驗(fEMSA)及石英晶體微天平(QCM),探討WRKY54與包含W-box的不同長度及不同DNA序列結合能力,結果顯示W-box核心序列(TTGACT)兩側的邊緣序列,將會影響WRKY54的辨認並結合至特定的W-box。SAG12是植物體內參與葉片老化的基因,其啟動子上游具有四個包含W-box的DNA序列,在經fEMSA及QCM分析後,僅W4可被WRKY54辨認,進一步以染色質免疫沉澱分析(ChIP assay),亦可確認其結合的專一性受邊緣序列的影響。透過蛋白質結構模擬,分析WRKY54上特定胺基酸與W-box核心及側邊序列結合特性,推測WRKY54對於W-box邊緣序列(TxTTGACT)的辨認,有其重要性,本研究將有助於未來探究WRKY轉錄因子結合至W-box的專一性分析。 | zh_TW |
| dc.description.abstract | WRKY transcription factors are exclusive in plants and involved in biotic and abiotic stresses. Arabidopsis WRKY54(AT2G40750) belongs to Group III of the WRKY family and consists of a WRKY domain with zinc-finger of C2HC that specifically binds to W box (TTGACC/T) in plant genome. WRKY54 involves in salicylic acid signal transduction and could respond to system defense in plants. It is unclear if the flanking sequence of W-box could affect the binding specificity of WRKY transcription factor. In this study, we aim to find out the influence of the flanking sequence on binding specificity of WRKY transcription factor.
Using affinity chromatography and size exclusion chromatography, we successfully purified WRKY54 DNA binding domain(DBD) recombinant protein. Dynamic light scattering identified that WRKY54 DBD recombinant protein is a monomer and mono-dispersed in solution and its molecular weight is 59 kDa. Fluorescein-based electrophoretic mobile shift assay (fEMSA) and Quartz-crystal microbalance (QCM) have confirmed WRKY54 could bind to various W-boxes DNA fragments and the results indicated that flanking region of W-box would affect the binding affinity of WRKY54. SAG12 is a gene to induce leaf senescence, its promoter consists of four W-boxes and only W4 can be recognized in ChIP(chromatin immno-preicpitation) assay. It is also confirmed that the flanking sequence of W-box plays an important role for WRKY54 transcription factor. Based on structural modeling of WRKY54 and W-box, we proposed that the binding residues of WRKY54 would recognize W-box with its flanking region (TxTTGACT). This study could reveal the binding specificity between WRKY transcription factors and W-box for further study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:20:38Z (GMT). No. of bitstreams: 1 ntu-105-R03b42019-1.pdf: 3978658 bytes, checksum: 0f1f15cc9c79dd4179be29eed1e0ebca (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝................................................................................................................................I
中文摘要.......................................................................................................................II Abstract........................................................................................................................III 目錄.............................................................................................................................IV 圖目錄......................................................................................................................VII 表目錄.........................................................................................................................VIII 附錄目錄......................................................................................................................IX 縮寫對照表.................................................................................................................X 第一章 前言 1 1.1 植物WRKY轉錄因子參與植物對環境的適應 1 1.2 WRKY轉錄因子家族 4 1.3 WRKY54屬於WRKY家族第三群轉錄因子 6 1.4 WRKY轉錄因子之蛋白質結構 7 1.5 研究目標 7 第二章 材料與方法 9 2.1 WRKY54 DNA binding domain 表現載體之構築 9 2.2 勝任細胞(Competent cell)的製備 10 2.3 質體DNA轉型作用(Transformation) 10 2.4 重組蛋白質之大量表現和純化(Over-expression and purification) 11 2.5 SDS-聚丙烯醯胺膠體電泳(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis, SDS-PAGE).......................................................................12 2.6 蛋白質定量分析 12 2.7 西方點墨法(Western blotting) 13 2.8 粒徑排阻層析分析(Size-exclusion chromatography, SEC) 14 2.9 動態光散射分析(Dynamic light scattering, DLS) 14 2.10 螢光電泳遷移分析 (Fluorescein electrophoresis mobility shift assay) 14 2.11 石英晶體微天平分析蛋白質樣品與DNA之交互作用 15 2.12 染色質免疫共沈澱法(Chromatin immune co-precipitation ) 16 2.13 WRKY54 DNA binding domain結構模型的建立 18 第三章 結果 19 3.1 WRKY54 DNA結合區蛋白質表現與純化 19 3.1.1利用親和性層析管柱HisTrap得到相對純度及大量的重組蛋白 19 3.1.2 利用膠體過濾層析法得到具高純度的重組蛋白質 20 3.2 重組蛋白WRKY54 DNA binding domain的均質性分析 20 3.3 利用fEMSA分析WRKY54 DBD與不同長度W-boxes結合能力 21 3.4 利用QCM分析WRKY54 DBD與不同長度的W4序列解離常數 23 3.5 ChIP-PCR分析植物體內WRKY54與W4的結合 25 第四章 討論 27 4.1 WRKY54蛋白質的表現與純化 27 4.2 WRKY54 DNA結合區重組蛋白在溶液中為單體蛋白質 28 4.3 WRKY54的結合性受W-box核酸序列上之flanking region影響 29 4.4 WRKY54與不同長度之W4結合能力探討 30 第五章 結論 34 參考文獻.....................................................................................................................36 圖表.............................................................................................................................42 附圖.............................................................................................................................57 附表.............................................................................................................................69 附錄..............................................................................................................................72 | |
| dc.language.iso | zh-TW | |
| dc.subject | W-box結合專一性 | zh_TW |
| dc.subject | WRKY54 DNA結合區段 | zh_TW |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | W-box binding specificity | en |
| dc.subject | WRKY54 DNA binding domain | en |
| dc.subject | Transcription factor | en |
| dc.title | W-box的邊緣序列影響阿拉伯芥WRKY54 DNA結合區的結合能力 | zh_TW |
| dc.title | The flanking sequence of W-box influences the binding of Arabidopsis WRKY54 DNA binding domain | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標,吳克強,王雅筠,周信宏 | |
| dc.subject.keyword | WRKY54 DNA結合區段,轉錄因子,W-box結合專一性, | zh_TW |
| dc.subject.keyword | WRKY54 DNA binding domain,Transcription factor,W-box binding specificity, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201602836 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
