請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49238完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈儀平(Yeeping Chia) | |
| dc.contributor.author | Ding-Qian Zheng | en |
| dc.contributor.author | 鄭丁乾 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:20:25Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | Serway, R. A., & Jewett, J. W. (2013). Physics for scientists and engineers with modern physics ninth edition, Cengage Learning, Boston, USA, pp. 419-420.
Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of applied physics, 12(2), 155-164. Bishop, A. W., & Hight, D. W. (1977). The value of Poisson's ratio in saturated soils and rocks stressed under undrained conditions. Geotechnique, 27(3), 369-384. Braja M . Das. (2009). Principles of geotechnical engineering seven edition, Cengage Learning, Boston, USA, pp. 302-303. Carr, P. A., & Van Der Kamp, G. S. (1969). Determining aquifer characteristics by the tidal method. Water Resources Research, 5(5), 1023-1031. Chia, Y., Wang, Y. S., Chiu, J. J., & Liu, C. W. (2001). Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan. Bulletin of the Seismological Society of America, 91(5), 1062-1068. Davidson, P., & Wilson, S. (2011). Groundwaters of Marlborough. Marlborough District Council, Marlborough, New Zealand, pp. 126-129. Depner, J. (2000). Ocean tide‐induced head fluctuations in wells. Water Resources Research, 36(12), 3559-3566. Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology second edition, John Wiley & Sons, New York, USA. Dong, L., Cheng, D., Liu, J., Zhang, P., & Ding, W. (2015). Analytical analysis of groundwater responses to estuarine and oceanic water stage variations using superposition principle. Journal of Hydrologic Engineering, 21(1), 04015046. Erskine, A. D. (1991). The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water, 29(4), 556-562. Ferris, J. G. (1952). Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. US Geological Survey. Feynman, R. P., Leighton, R. B., & Sands, M. (2013). The Feynman Lectures on Physics the new millennium edition, California institute of technology, Pasadena, USA, pp. 74-75. Helwany (2007). Applied soil Mechanics with ABAQUS applications, John Wiley & Sons, New York, USA. pp. 125-126. Hvorslev, M. J. (1951). Time lag and soil permeability in ground-water observations. U.S. Army Corps Eng. Bull. 36 Igarashi, G., Wakita, H., & Sato, T. (1992). Precursory and coseismic anomalies in well water levels observed for the February 2, 1992 Tokyo Bay earthquake. Geophysical research letters, 19(15), 1583-1586. Jacob, C. E. (1939). Fluctuations in artesian pressure produced by passing railroad‐trains as shown in a well on Long Island, New York. Eos, Transactions American Geophysical Union, 20(4), 666-674. Johnson, K., Karunasena, W., Guazzo, A., & Sivakugan, N. (2001). Load-deformation characteristics of axially loaded piles. In Soft Soil Engineering: Proceedings of the Third International Conference on Soft Soil Engineering. 339-344. Kümpel, H. J. (1992). About the potential of wells to reflect stress variations within inhomogeneous crust. Tectonophysics, 211(1), 317-336. Lanyon, J. A., Eliot, I. G., & Clarke, D. J. (1982). Groundwater-level variation during semidiurnal spring tidal cycles on a sandy beach. Marine and Freshwater Research, 33(3), 377-400. Li, H., Li, G., Cheng, J., & Boufadel, M. C. (2007). Tide‐induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resources Research, 43(3). Li, L., Barry, D. A., Cunningham, C., Stagnitti, F., & Parlange, J. Y. (2000). A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Advances in Water Resources, 23(8), 825-833. Ma, K. F., Lee, C. T., Tsai, Y. B., Shin, T. C., & Mori, J. (1999). The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos, Transactions American Geophysical Union, 80(50), 605-611. Meinzer, O. E. (1939), Groundwater in the United States, US Geological Survey Water Supply Papers, 157-232. Merritt, M. L. (2004). Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida. US Department of the Interior, US Geological Survey. 1-2. Montgomery, D. R., & Manga, M. (2003). Streamflow and water well responses to earthquakes. Science, 300(5628), 2047-2049. Rahi, K., & Halihan, T. (2009). Estimating Selected Hydraulic Parameters of the Arbuckle-Simpson Aquifer from the Analysis of Naturally-Induced Stresses. Boone Pickens School of Geology, Oklahoma State University. Sun, H. (1997). A two‐dimensional analytical solution of groundwater response to tidal loading in an estuary. Water Resources Research, 33(6), 1429-1435. Terzaghi, K. (1943). Theoretical Soil Mechanics, John Wiley & Sons, New York, USA. pp. 267-274. Van der Kamp, G. (1972). Tidal fluctuations in a confined aquifer extending under the sea. In International Geological Congress (Vol. 24, No. 11, pp. 101-106). Zhou, X. (2008). Determination of aquifer parameters based on measurements of tidal effects on a coastal aquifer near Beihai, China. Hydrological processes, 22(16), 3176-3180. 戴昌鳳、俞何興 (2014) 臺灣區域海洋學,臺大出版中心,臺北,第39-40頁。 李廣信 (2004) 高等土力學,清華大學出版社,北京,第268-271頁。 劉慶怡 (2008) 2000年ML6.7地震引發坪頂觀測井之地下水位異常變化,國立臺灣大學地質科學研究所碩士論文,共80頁。 王志豪 (1985) 臺灣海峽的潮汐,臺灣海峽,第4卷,第2期,第120-128頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49238 | - |
| dc.description.abstract | 海洋潮汐週期性漲潮和退潮的荷重變化,會影響濱海地下水井的水位。東石地下水觀測站距離海岸線400公尺,東石3號井和4號井的地下水位,通常會隨著海潮,出現延遲的週期性變化。由於潮汐引發地下水位變化的幅度主要受控於地層彈性係數,而其週期性變化的延遲時間與水力傳導係數相關,但是也受到地層彈性係數的影響,因而可藉由數值模擬的方法及潮汐與地下水位變化的觀測紀錄,來探討含水層特性。地震時斷層錯動產生的應力也會引起地下水位異常的改變,從集集地震時東石3含水層和東石4含水層的同震水位變化,可以瞭解到地震作用下含水層的特性及應力應變狀況。
本研究利用ABAQUS 軟體建立二維變形與孔隙水流耦合模式,模擬潮汐荷重變化對地下水位的影響,並經由水位觀測紀錄加以驗證,可以瞭解地層彈性係數對孔隙水壓的影響,推估含水層特性。模擬的結果顯示,當東石3含水層和東石4含水層的水力傳導係數分別為5×10-3 m/s和5.5×10-3 m/s,楊氏模數分別為4.7×107 Pa和3.0×107 Pa時,對應的地下水位延遲時間和振幅與觀測值接近。從獲得的含水層特性可以推估不同地震位移所對應的同震地下水位變化,將模擬的同震地下水位變化與觀測值對比,求得地震時於東石地區產生的位移大小為模型總長度的0.01%。因此,利用數值模擬的方法配合現地觀測資料可以獲得含水層特性,並探討地震時含水層的應力變化。 | zh_TW |
| dc.description.abstract | Ocean tide may change the groundwater level in the coastal area. The Dongshi groundwater level monitoring station is located about 400 m from the shoreline. The groundwater level of Dongshi-3 and Dongshi-4 wells usually changes with ocean tide, but about 40 minutes behind it. The variations of groundwater level in response to the loading of ocean tide are related to the aquifer properties, such as elastic constants of sediments. The time lag is influenced by both the elastic constants and the hydraulic parameters. On the other hand, the co-seismic groundwater level change in the two wells induced by the Chi-Chi earthquake was attributed to the short-term loading from the lateral direction.
In order to understand stress mechanism in Dongshi station, the finite element software ABAQUS was used. We established a two-dimensional simplified model and used tidal method to calculate the Young's modulus of two aquifers where Dongshi-3 and Dongshi-4 are screened. Numerical analysis result revealed the Young’s modulus of Dongshi-3 and Dongshi-4 wells were 4.7×107 and 3.0×107 Pa ,respectively the hydraulic conductivities of Dongshi-3 and Dongshi-4 wells were 5.0×10-3 and 5.5×10-3 m/s. After the aquifer parameters were obtained, the amount of co-seismic groundwater level change induced by Chi-Chi earthquake could be calculated. The simulated co-seismic groundwater level changes were compared with the field observations, and the displacement at Dongshi area was found to be 0.01% of the model. Therefore, numerical analysis is a method that can be used to identify the aquifer parameters and earthquake effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:20:25Z (GMT). No. of bitstreams: 1 ntu-105-R02224217-1.pdf: 2034831 bytes, checksum: c7de7fb5aa2d6eca8a6317c5a0ba3066 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目 vi 表目 viii 第一章 緒論 1 1.1 研究動機和目的 1 1.2 文獻回顧 2 1.2.1潮汐影響地下水位的解析解 2 1.2.2通過潮汐獲取含水層參數 4 1.2.3地震與地下水位變化 5 1.3 研究方法 5 第二章 東石地區地下水位變化 7 2.1 東石地區概況 7 2.2濱海地區地下水位受潮汐影響模式 10 2.3東石潮汐和地下水位的長期變化 13 2.4 同震地下水位變化 19 第三章 數值模擬分析方法 20 3.1 有限元素法和數值分析軟體ABAQUS 20 3.2 數值模式 21 3.3太沙基 (Terzaghi) 一維固結理論的數值模擬 25 第四章 潮汐引發地下水位變化的數值模擬 30 4.1概念模型 30 4.1.1 模擬區域 30 4.1.2 邊界條件 33 4.2垂向荷重引起的地下水位變化 37 4.3 潮汐水位正弦變化時的數值模擬 41 4.3.1 模型設置 41 4.3.2 水文地質參數 42 4.3.3 參數敏感度分析 45 4.3.4 結果分析 48 第五章 地震引發地下水位變化的數值模擬 53 5.1概念模型 53 5.3 模擬結果分析 55 5.3.1 時間序列的分析 56 5.3.2 空間序列的分析 57 第六章 結論與建議 59 參考文獻 60 附錄A 潮汐引發地下水位變化數值模擬程式輸入檔 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 楊氏模數 | zh_TW |
| dc.subject | 潮汐 | zh_TW |
| dc.subject | 水力傳導係數 | zh_TW |
| dc.subject | 地下水位 | zh_TW |
| dc.subject | groundwater level | en |
| dc.subject | numerical simulation | en |
| dc.subject | hydraulic conductivity | en |
| dc.subject | ocean tide | en |
| dc.title | 潮汐與地震引發地下水位變化之數值模擬 | zh_TW |
| dc.title | Numerical Simulation of Groundwater Level Changes due to the Ocean Tide and the Earthquake | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱永嘉(Yung-Chia Chiu),黃燦輝(Tsan-Hwei Huang),劉聰桂(Tsung-Kwei Liu) | |
| dc.subject.keyword | 潮汐,地下水位,楊氏模數,水力傳導係數,數值模擬, | zh_TW |
| dc.subject.keyword | ocean tide,groundwater level,hydraulic conductivity,numerical simulation, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201602719 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
