Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳建昌(Chien-Chang Wu)
dc.contributor.authorChih-Lun Huangen
dc.contributor.author黃稚倫zh_TW
dc.date.accessioned2021-06-15T11:20:22Z-
dc.date.available2016-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citationBailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E. & Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25, 63-77.
Baron-Cohen, S., Leslie, A. M. & Frith, U. (1985). Does the autistic child have a 'theory of mind'? Cognition 21, 37-46.
Bartos, M., Vida, I. & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8, 45-56.
Berchicci, M., Zhang, T., Romero, L., Peters, A., Annett, R., Teuscher, U., Bertollo, M., Okada, Y., Stephen, J. & Comani, S. (2011). Development of mu rhythm in infants and preschool children. Dev Neurosci 33, 130-43.
Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., Cook, E. H., Jr., Fang, Y., Song, C. Y. & Vitale, R. (2002). Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7, 311-6.
Chan, A. S., Sze, S. L. & Cheung, M. C. (2007). Quantitative electroencephalographic profiles for children with autistic spectrum disorder. Neuropsychology 21, 74-81.
Chen, C. H., Huang, C. C., Cheng, M. C., Chiu, Y. N., Tsai, W. C., Wu, Y. Y., Liu, S. K. & Gau, S. S. (2014). Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Mol Autism. 5:36., 10.1186/2040-2392-5-36. eCollection 2014.
Cohen, L. T., Rickards, F. W. & Clark, G. M. (1991). A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. J Acoust Soc Am 90, 2467-79.
Cook, E. H., Jr., Lindgren, V., Leventhal, B. L., Courchesne, R., Lincoln, A., Shulman, C., Lord, C. & Courchesne, E. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60, 928-34.
Destexhe, A. & Pare, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81, 1531-47.
Edgar, J. C., Fisk, C. L. t., Liu, S., Pandey, J., Herrington, J. D., Schultz, R. T. & Roberts, T. P. (2016). Translating Adult Electrophysiology Findings to Younger Patient Populations: Difficulty Measuring 40-Hz Auditory Steady-State Responses in Typically Developing Children and Children with Autism Spectrum Disorder. Dev Neurosci 38, 1-14.
Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., Cannon, K. M., Monroe, J. F., Cornew, L., Qasmieh, S., Liu, S., Welsh, J. P., Levy, S. E. & Roberts, T. P. (2015). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. J Autism Dev Disord 45, 395-405.
Fatemi, S. H., Folsom, T. D., Reutiman, T. J. & Thuras, P. D. (2009a). Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 8, 64-9.
Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C. & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52, 805-10.
Fatemi, S. H., Reutiman, T. J., Folsom, T. D. & Thuras, P. D. (2009b). GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39, 223-30.
Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P. & Siegel, S. J. (2010). Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 68, 1100-6.
Gander, P. E., Bosnyak, D. J. & Roberts, L. E. (2010). Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention. Hear Res 268, 213-26.
Gao, W. J., Newman, D. E., Wormington, A. B. & Pallas, S. L. (1999). Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons. J Comp Neurol 409, 261-73.
Gross, E., El-Baz, A. S., Sokhadze, G. E., Sears, L., Casanova, M. F. & Sokhadze, E. M. (2012). Induced Eeg Gamma Oscillation Alignment Improves Differentiation between Autism and Adhd Group Responses in a Facial Categorization Task. J Neurother 16, 78-91.
Happe, F. & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36, 5-25.
Harada, M., Taki, M. M., Nose, A., Kubo, H., Mori, K., Nishitani, H. & Matsuda, T. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 41, 447-54.
Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31, 247-8.
Johnson, G., Wu, E. X. & Hilal, S. K. (1994). Optimized phase scrambling for RF phase encoding. J Magn Reson B 103, 59-63.
Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. (2015). Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry 54, 11-24.
Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K., Sprock, J., Swerdlow, N. R. & Braff, D. L. (2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60, 1231-40.
Mandy, W., Chilvers, R., Chowdhury, U., Salter, G., Seigal, A. & Skuse, D. (2012). Sex differences in autism spectrum disorder: evidence from a large sample of children and adolescents. J Autism Dev Disord 42, 1304-13.
Mandy, W. & Lai, M. C. (2016). Annual Research Review: The role of the environment in the developmental psychopathology of autism spectrum condition. J Child Psychol Psychiatry 57, 271-92.
McBain, C. J. & Fisahn, A. (2001). Interneurons unbound. Nat Rev Neurosci 2, 11-23.
McFadden, K. L., Hepburn, S., Winterrowd, E., Schmidt, G. L. & Rojas, D. C. (2012). Abnormalities in gamma-band responses to language stimuli in first-degree relatives of children with autism spectrum disorder: an MEG study. BMC Psychiatry 12, 213.
Minshew, N. J. & Keller, T. A. (2010). The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23, 124-30.
Muthukumaraswamy, S. D. & Singh, K. D. (2009). Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex. Hum Brain Mapp 30, 2000-7.
Oda, Y., Onitsuka, T., Tsuchimoto, R., Hirano, S., Oribe, N., Ueno, T., Hirano, Y., Nakamura, I., Miura, T. & Kanba, S. (2012). Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PLoS One 7, e39955.
Persico, A. M. & Bourgeron, T. (2006). Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 29, 349-58.
Pizzarelli, R. & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011, 297153.
Plourde, G. (2006). Auditory evoked potentials. Best Pract Res Clin Anaesthesiol 20, 129-39.
Poulsen, C., Picton, T. W. & Paus, T. (2009). Age-related changes in transient and oscillatory brain responses to auditory stimulation during early adolescence. Dev Sci 12, 220-35.
Reyes, S. A., Lockwood, A. H., Salvi, R. J., Coad, M. L., Wack, D. S. & Burkard, R. F. (2005). Mapping the 40-Hz auditory steady-state response using current density reconstructions. Hear Res 204, 1-15.
Roach, B. J. & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34, 907-26.
Robertson, C. E., Ratai, E. M. & Kanwisher, N. (2016). Reduced GABAergic Action in the Autistic Brain. Curr Biol 26, 80-5.
Rojas, D. C., Maharajh, K., Teale, P. & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry 8, 66.
Rojas, D. C., Teale, P. D., Maharajh, K., Kronberg, E., Youngpeter, K., Wilson, L. B., Wallace, A. & Hepburn, S. (2011). Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Mol Autism 2, 11.
Rojas, D. C. & Wilson, L. B. (2014). gamma-band abnormalities as markers of autism spectrum disorders. Biomark Med 8, 353-68.
Ross, B. & Pantev, C. (2004). Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115, 2193-206.
Rubenstein, J. L. & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2, 255-67.
Schipul, S. E., Keller, T. A. & Just, M. A. (2011). Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 5, 10.
Stroganova, T. A., Butorina, A. V., Sysoeva, O. V., Prokofyev, A. O., Nikolaeva, A. Y., Tsetlin, M. M. & Orekhova, E. V. (2015). Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders. J Neurodev Disord 7, 21.
Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. J Physiol Paris 97, 355-63.
Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3, 151-162.
Traub, R. D., Cunningham, M. O., Gloveli, T., LeBeau, F. E., Bibbig, A., Buhl, E. H. & Whittington, M. A. (2003). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A 100, 11047-52.
Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621-4.
Uhlhaas, P. J. & Singer, W. (2007). What do disturbances in neural synchrony tell us about autism? Biol Psychiatry 62, 190-1.
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38, 315-36.
Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D. & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol Psychiatry 62, 192-7.
Yip, J., Soghomonian, J. J. & Blatt, G. J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113, 559-68.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49237-
dc.description.abstract研究目的:自閉症類群障礙症或稱泛自閉症障礙是一種神經發展疾病,與γ-氨基丁酸(γ-aminobutyric acid)神經傳導功能有關。感覺處理歷程的異常現象廣泛存在自閉症類群障礙症的患者身上,尤其是在聽知覺處理歷程。γ-氨基丁酸抑制性中介神經元對於腦電圖訊號中在迦瑪頻段的振盪現象之調節及產生,扮演了至關重要的角色。本研究使用病例對照研究,比較自閉症類群障礙症患者與健康受試者,在接受不同頻段聽覺穩態刺激下所產生的腦電圖迦馬頻段的聽覺穩態反應 (auditory steady-state response,簡稱ASSR)。
研究方法:本研究納入五十位自閉症類群障礙症患者(年齡介於6歲至29歲)及四十一位健康受試者(年齡介於6歲至27歲)。受試者個別依序接受出現頻率為二十赫茲、三十赫茲、四十赫茲的單擊音序列聲音刺激。額葉及顳葉的聽覺穩態反應由32顆電極腦波儀帽記錄,並透過時頻分析計算20Hz頻段、30Hz頻段及40Hz頻段的誘發功率(evoked power)及試驗間相位同調性(inter-trial phase coherence)。
結果: 自閉症類群障礙症患者在顳葉區的20Hz頻段誘發功率顯著低於健康受試者,在額葉中線則高於健康受試者;30Hz頻段則在顳葉區域顯著低於健康受試者;但是40Hz頻段的誘發電位在兩組間無顯著差異。自閉症類群障礙症患者的20Hz及30Hz頻段試驗間相位同調性在顳葉顯著低於健康受試者組;然而,在40Hz頻段沒有顯著差異。若將受試者再區分為成人組、青少年組及兒童組,自閉症類群障礙症患者與健康受試者在30Hz頻段及40Hz頻段的誘發功率與及試驗間相位同調性的差異,在兒童組見於兩側額葉,青少年組及成人組則分布於中線或左側額葉的位置。
結論:自閉症類群障礙症患者有迦瑪頻段穩態聽覺反應的缺損,而且年齡與此缺損的腦區有關聯。這提供神經電生理學上的證據支持患者在γ-氨基丁酸神經傳導系統的發展過程有障礙。
zh_TW
dc.description.abstractObjective: Autism spectrum disorder (ASD) is a neurodevelopmental disorder involving γ-aminobutyric acid (GABA) neurotransmission. Sensory abnormalities, particularly in the auditory modality, are commonly seen in individuals with ASD. Since GABAergic interneurons play a fundamental role in generating neuronal gamma oscillations, this study aims to investigate whether ASD patients have altered auditory steady-state response (ASSR) in gamma-band range.
Methods: We recruited 50 patients with ASD and 41 typically developing controls (TDC). The participants were presented three click trains with rates of stimulation at 20-, 30- and 40-Hz, respectively. The frontal and temporal ASSR was recorded through a 32-channel electrode cap. Evoked power and inter-trial phase coherence (ITC) were derived from the electroencephalogram (EEG) signals.
Results: In response to 20-Hz click trains, the ASD group showed lower evoked power at 20-Hz band in the temporal area but higher in the midline frontal area, and lower evoked power at the 30-Hz band in the temporal area. The ASD group showed smaller ITC in the temporal area in response to both 20-Hz anda 30-Hz click trains. There were no significant group differences in the 40-Hz band evoked power and the ITC. When participants were divided into the adult, adolescent and childhood subgroups, all the three groups showed significant differences of frontal 40-Hz band evoked power and between ASD patents and TDC participants. The group differences were observed in bilateral frontal regions in childhood subgroup, but shift to the midline and left frontal regions in the adolescent and adult groups.
Conclusion: Age is an important factor to be considered when investigating gamma band auditory steady-state response. Deficits in gamma-band ASSR were noted in patients with ASD, and age was related to the distribution of brain regions where these deficits were found. It provides neuroelectrophysiological evidence for the altered development of GABAergic neurotransmission in patients with ASD.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:20:22Z (GMT). No. of bitstreams: 1
ntu-105-R03454009-1.pdf: 1021650 bytes, checksum: ab6db5ff62b4bec13bb90af1d333fe18 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract 1
1. Introduction 1
1.1. Autism spectrum disorder 1
1.2. Altered GABAergic neurotransmission in autism 1
1.3. Gamma-band oscillations 3
1.4. Auditory steady-state response (ASSR) 5
1.5. Gamma-band Oscillations 6
1.6. Aims and Hypothesis 7
2. Methods 8
2.1. Participants 8
2.2. Auditory Steady-State Response Paradigm 9
2.3. EEG recording 10
2.4. Data Processing 10
2.5. Statistical Analysis 11
3. Results 12
3.1. Demographics 12
3.2. Auditory steady-state response 12
3.3. Age effects and Subgroup Analysis 12
3.3.1. Subgroup analysis - adult participants 13
3.3.2. Subgroup analysis – adolescent participants 13
3.3.3. Subgroup analysis – child participants 14
4. Discussion 15
4.1. Altered gamma oscillations in adults with ASD 15
4.2. Limitations: 17
4.3. Conclusion: 17
4.4. Next step 18
References 19
Tables 24
Figures 32
Supplementary Tables 37
dc.language.isoen
dc.title自閉症患者的不正常腦迦馬振動波zh_TW
dc.titleDysfunctional Gamma-band Oscillations
in Individuals with Autism Spectrum Disorder
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor高淑芬
dc.contributor.oralexamcommittee林發暄,謝明憲,曾明宗
dc.subject.keyword自閉症類群障礙症,迦瑪頻段振盪,γ-氨基丁酸,聽覺穩態反應,腦電波,誘發功率,試驗間相位同調性,zh_TW
dc.subject.keywordautism spectrum disorder,gamma-band oscillations,γ-aminobutyric acid,auditory steady-state response,electroencephalogram,evoked power,inter-trial phase coherence,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201603356
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
997.71 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved