Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭益謙(Ivan-Chen Cheng)
dc.contributor.authorHeng-Wei Leeen
dc.contributor.author李恆瑋zh_TW
dc.date.accessioned2021-06-15T11:20:09Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation甘昀騏。2012。抗口蹄疫病毒結構蛋白VP1單源抗體應用於酵素連結免疫吸附試 驗:Establishment of ELISA with monoclonal antibody against structural protein VP1 of foot-and-mouth disease virus.
Abbott, W.M., Damschroder, M.M., Lowe, D.C., 2014. Current approaches to fine mapping of antigen-antibody interactions. Immunology 142, 526-535.
Abrams, C.C., King, A.M., Belsham, G.J., 1995. Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. J Gen Virol 76 ( Pt 12), 3089-3098.
Armer, H., Moffat, K., Wileman, T., Belsham, G.J., Jackson, T., Duprex, W.P., Ryan, M., Monaghan, P., 2008. Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro. J Virol 82, 10556-10566.
Asfor, A.S., Upadhyaya, S., Knowles, N.J., King, D.P., Paton, D.J., Mahapatra, M., 2014. Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. J Gen Virol 95, 1104-1116.
Barnett, P.V., Samuel, A.R., Pullen, L., Ansell, D., Butcher, R.N., Parkhouse, R.M., 1998. Monoclonal antibodies, against O1 serotype foot-and-mouth disease virus, from a natural bovine host, recognize similar antigenic features to those defined by the mouse. J Gen Virol 79 ( Pt 7), 1687-1697.
Basagoudanavar, S.H., Hosamani, M., Tamil Selvan, R.P., Sreenivasa, B.P., Saravanan, P., Chandrasekhar Sagar, B.K., Venkataramanan, R., 2013. Development of a liquid-phase blocking ELISA based on foot-and-mouth disease virus empty capsid antigen for seromonitoring vaccinated animals. Arch Virol 158, 993-1001.
Belsham, G.J., McInerney, G.M., Ross-Smith, N., 2000. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74, 272-280.
Bhat, S.A., Saravanan, P., Hosamani, M., Basagoudanavar, S.H., Sreenivasa, B.P., Tamilselvan, R.P., Venkataramanan, R., 2013. Novel immunogenic baculovirus expressed virus-like particles of foot-and-mouth disease (FMD) virus protect guinea pigs against challenge. Res Vet Sci 95, 1217-1223.
Biswal, J.K., Bisht, P., Mohapatra, J.K., Ranjan, R., Sanyal, A., Pattnaik, B., 2015a. Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to detect antibodies against foot-and-mouth disease virus serotype O. J Virol Methods 215-216, 45-51.
Biswal, J.K., Mohapatra, J.K., Bisht, P., Subramaniam, S., Sanyal, A., Pattnaik, B., 2015b. A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of foot-and-mouth disease virus serotype A in BHK-21 cells. Biologicals 43, 71-78.
Brocchi Emiliana, G.S., Yadin Hagai and Franco De Simone. , 2004. Validation of a Solid Phase Competitive ELISA (SPBE) based on the use a single neutralising monoclonal antibody for the measurement of antibodies to FMDV type Asia 1. , REPORT of the Session of the Research Group of the Standing Technical Committee of the EUROPEAN COMMISSION FOR THE CONTROL OF FOOT-AND-MOUTH DISEASE (EUFMD).
Chamberlain, K., Fowler, V.L., Barnett, P.V., Gold, S., Wadsworth, J., Knowles, N.J., Jackson, T., 2015. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J Gen Virol 96, 2684-2692.
Chenard, G., Miedema, K., Moonen, P., Schrijver, R.S., Dekker, A., 2003. A solid-phase blocking ELISA for detection of type O foot-and-mouth disease virus antibodies suitable for mass serology. J Virol Methods 107, 89-98.
Cheng, I.C., Liang, S.M., Tu, W.J., Chen, C.M., Lai, S.Y., Cheng, Y.C., Lee, F., Huang, T.S., Jong, M.H., 2006. Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibodies against VP1. J Vet Med Sci 68, 859-864.
Crowther, J.R., Farias, S., Carpenter, W.C., Samuel, A.R., 1993. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74 ( Pt 8), 1547-1553.
Domingo, E., Escarmis, C., Lazaro, E., Manrubia, S.C., 2005. Quasispecies dynamics and RNA virus extinction. Virus Res 107, 129-139.
Donnelly, M.L., Luke, G., Mehrotra, A., Li, X., Hughes, L.E., Gani, D., Ryan, M.D., 2001. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol 82, 1013-1025.
Du, Y., Bi, J., Liu, J., Liu, X., Wu, X., Jiang, P., Yoo, D., Zhang, Y., Wu, J., Wan, R., Zhao, X., Guo, L., Sun, W., Cong, X., Chen, L., Wang, J., 2014. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 88, 4908-4920.
Falk, M.M., Grigera, P.R., Bergmann, I.E., Zibert, A., Multhaup, G., Beck, E., 1990. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64, 748-756.
Fernandez-Miragall, O., Martinez-Salas, E., 2003. Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9, 1333-1344.
Fowler, V.L., Knowles, N.J., Paton, D.J., Barnett, P.V., 2010. Marker vaccine potential of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion. Vaccine 28, 3428-3434.
Fry, E.E., Stuart, D.I., Rowlands, D.J., 2005. The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol 288, 71-101.
Fuerst, T.R., Niles, E.G., Studier, F.W., Moss, B., 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122-8126.
Garcia-Nunez, S., Gismondi, M.I., Konig, G., Berinstein, A., Taboga, O., Rieder, E., Martinez-Salas, E., Carrillo, E., 2014. Enhanced IRES activity by the 3'UTR element determines the virulence of FMDV isolates. Virology 448, 303-313.
Golding, S.M., Hedger, R.S., Talbot, P., 1976. Radial immuno-diffusion and serum-neutralisation techniques for the assay of antibodies to swine vesicular disease. Res Vet Sci 20, 142-147.
Goodwin, S., Tuthill, T.J., Arias, A., Killington, R.A., Rowlands, D.J., 2009. Foot-and-mouth disease virus assembly: processing of recombinant capsid precursor by exogenous protease induces self-assembly of pentamers in vitro in a myristoylation-dependent manner. J Virol 83, 11275-11282.
Grazioli, S., Fallacara, F., Brocchi, E., 2013. Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes. J Gen Virol 94, 559-569.
Grubman, M.J., Baxt, B., 2004. Foot-and-mouth disease. Clin Microbiol Rev 17, 465-493.
Gullberg, M., Muszynski, B., Organtini, L.J., Ashley, R.E., Hafenstein, S.L., Belsham, G.J., Polacek, C., 2013a. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol 94, 1769-1779.
Gullberg, M., Polacek, C., Botner, A., Belsham, G.J., 2013b. Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of 'self-tagged' particles. J Virol 87, 11591-11603.
Guo, H.C., Sun, S.Q., Jin, Y., Yang, S.L., Wei, Y.Q., Sun, D.H., Yin, S.H., Ma, J.W., Liu, Z.X., Guo, J.H., Luo, J.X., Yin, H., Liu, X.T., Liu, D.X., 2013. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet Res 44, 48.
Han, S.C., Guo, H.C., Sun, S.Q., 2015. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 160, 1-16.
Huang, C.C., Jong, M.H., Lin, S.Y., 2000. Characteristics of foot and mouth disease virus in Taiwan. J Vet Med Sci 62, 677-679.
Jamal, S.M., Belsham, G.J., 2013. Foot-and-mouth disease: past, present and future. Vet Res 44, 116.
Kitson, J.D., McCahon, D., Belsham, G.J., 1990. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26-34.
Kotecha, A., Seago, J., Scott, K., Burman, A., Loureiro, S., Ren, J., Porta, C., Ginn, H.M., Jackson, T., Perez-Martin, E., Siebert, C.A., Paul, G., Huiskonen, J.T., Jones, I.M., Esnouf, R.M., Fry, E.E., Maree, F.F., Charleston, B., Stuart, D.I., 2015. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol 22, 788-794.
Lamphear, B.J., Kirchweger, R., Skern, T., Rhoads, R.E., 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270, 21975-21983.
Lawrence, P., Pacheco, J., Stenfeldt, C., Arzt, J., Rai, D.K., Rieder, E., 2016a. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 492, 108-117.
Lawrence, P., Rai, D., Conderino, J.S., Uddowla, S., Rieder, E., 2016b. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 492, 38-52.
Lee, C.D., Yan, Y.P., Liang, S.M., Wang, T.F., 2009. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci 16, 69.
Li, Z., Yi, Y., Yin, X., Zhang, Z., Liu, J., 2008. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS One 3, e2273.
Lin, Y.L., Chang, C.Y., Pan, C.H., Deng, M.C., Tsai, H.J., Lee, F., 2014. First finding of Southeast Asia topotype of foot-and-mouth disease virus in Kinmen, Taiwan, in the 2012 outbreak. J Vet Med Sci 76, 1479-1485.
Lin, Y.L., Jong, M.H., Huang, C.C., Shieh, H.K., Chang, P.C., 2010. Genetic and antigenic characterization of foot-and-mouth disease viruses isolated in Taiwan between 1998 and 2009. Vet Microbiol 145, 34-40.
Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., et al., 1993. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362, 566-568.
Longjam, N., Deb, R., Sarmah, A.K., Tayo, T., Awachat, V.B., Saxena, V.K., 2011. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011, 905768.
Macias, M.P., Huang, L., Lashmit, P.E., Stinski, M.F., 1996. Cellular or viral protein binding to a cytomegalovirus promoter transcription initiation site: effects on transcription. J Virol 70, 3628-3635.
Mahapatra, M., Aggarwal, N., Cox, S., Statham, R.J., Knowles, N.J., Barnett, P.V., Paton, D.J., 2008. Evaluation of a monoclonal antibody-based approach for the selection of foot-and-mouth disease (FMD) vaccine strains. Vet Microbiol 126, 40-50.
Mahapatra, M., Hamblin, P., Paton, D.J., 2012. Foot-and-mouth disease virus epitope dominance in the antibody response of vaccinated animals. J Gen Virol 93, 488-493.
Mason, P.W., Grubman, M.J., Baxt, B., 2003. Molecular basis of pathogenesis of FMDV. Virus Res 91, 9-32.
McCahon, D., Crowther, J.R., Belsham, G.J., Kitson, J.D., Duchesne, M., Have, P., Meloen, R.H., Morgan, D.O., De Simone, F., 1989. Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J Gen Virol 70 ( Pt 3), 639-645.
Meyer, R.F., Babcock, G.D., Newman, J.F., Burrage, T.G., Toohey, K., Lubroth, J., Brown, F., 1997. Baculovirus expressed 2C of foot-and-mouth disease virus has the potential for differentiating convalescent from vaccinated animals. J Virol Methods 65, 33-43.
Mignaqui, A.C., Ruiz, V., Perret, S., St-Laurent, G., Singh Chahal, P., Transfiguracion, J., Sammarruco, A., Gnazzo, V., Durocher, Y., Wigdorovitz, A., 2013. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids. PLoS One 8, e72800.
Mohana Subramanian, B., Madhanmohan, M., Sriraman, R., Chandrasekhar Reddy, R.V., Yuvaraj, S., Manikumar, K., Rajalakshmi, S., Nagendrakumar, S.B., Rana, S.K., Srinivasan, V.A., 2012. Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency. Antiviral Res 96, 288-295.
Moraes, M.P., Mayr, G.A., Mason, P.W., Grubman, M.J., 2002. Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24. Vaccine 20, 1631-1639.
OIE, 2012. Terrestrial Manual Chapter 2.1.5. Foot and mouth disease, http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.01.05_FMD.pdf.
OIE, 2015. WAHIS Interface, http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports.
Pan, L., Zhang, Y., Wang, Y., Wang, B., Wang, W., Fang, Y., Jiang, S., Lv, J., Wang, W., Sun, Y., Xie, Q., 2008. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 121, 83-90.
Pham, P.L., Kamen, A., Durocher, Y., 2006. Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34, 225-237.
Polacek, C., Gullberg, M., Li, J., Belsham, G.J., 2013. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells. J Gen Virol 94, 1249-1258.
Porta, C., Xu, X., Loureiro, S., Paramasivam, S., Ren, J., Al-Khalil, T., Burman, A., Jackson, T., Belsham, G.J., Curry, S., Lomonossoff, G.P., Parida, S., Paton, D., Li, Y., Wilsden, G., Ferris, N., Owens, R., Kotecha, A., Fry, E., Stuart, D.I., Charleston, B., Jones, I.M., 2013. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. J Virol Methods 187, 406-412.
Rincon, V., Rodriguez-Huete, A., Mateu, M.G., 2015. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 96, 2595-2606.
Rodriguez, L.L., Grubman, M.J., 2009. Foot and mouth disease virus vaccines. Vaccine 27 Suppl 4, D90-94.
Roldao, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., 2010. Virus-like particles in vaccine development. Expert Rev Vaccines 9, 1149-1176.
Sweeney, T.R., Roque-Rosell, N., Birtley, J.R., Leatherbarrow, R.J., Curry, S., 2007. Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. J Virol 81, 115-124.
Taboga, O., Tami, C., Carrillo, E., Nunez, J.I., Rodriguez, A., Saiz, J.C., Blanco, E., Valero, M.L., Roig, X., Camarero, J.A., Andreu, D., Mateu, M.G., Giralt, E., Domingo, E., Sobrino, F., Palma, E.L., 1997. A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J Virol 71, 2606-2614.
Teplyakov, A., Obmolova, G., Wu, S.J., Luo, J., Kang, J., O'Neil, K., Gilliland, G.L., 2009. Epitope mapping of anti-interleukin-13 neutralizing antibody CNTO607. J Mol Biol 389, 115-123.
Valarcher, J.F., Leforban, Y., Rweyemamu, M., Roeder, P.L., Gerbier, G., Mackay, D.K., Sumption, K.J., Paton, D.J., Knowles, N.J., 2008. Incursions of foot-and-mouth disease virus into Europe between 1985 and 2006. Transbound Emerg Dis 55, 14-34.
Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., Duan, E., Luo, R., Zhang, Z., Liu, X., Chen, H., Xiao, S., 2012. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J Virol 86, 9311-9322.
Wang, G., Wang, Y., Shang, Y., Zhang, Z., Liu, X., 2015. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol J 12, 9.
Wang, H., Zhao, L., Li, W., Zhou, G., Yu, L., 2011. Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Vet Microbiol 148, 189-199.
Xue, M., Wang, H., Li, W., Zhou, G., Tu, Y., Yu, L., 2012. Effects of amino acid substitutions in the VP2 B-C loop on antigenicity and pathogenicity of serotype Asia1 foot-and-mouth disease virus. Virol J 9, 191.
Yang, M., Xu, W., Goolia, M., Zhang, Z., 2014. Characterization of monoclonal antibodies against foot-and-mouth disease virus serotype O and application in identification of antigenic variation in relation to vaccine strain selection. Virol J 11, 136.
Yang, P.C., Chu, R.M., Chung, W.B., Sung, H.T., 1999. Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet Rec 145, 731-734.
Zunszain, P.A., Knox, S.R., Sweeney, T.R., Yang, J., Roque-Rosell, N., Belsham, G.J., Leatherbarrow, R.J., Curry, S., 2010. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. J Mol Biol 395, 375-389.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49231-
dc.description.abstract口蹄疫可感染所有偶蹄類動物,且具有高度傳染力,在畜牧產業中是相當重要的病毒性疾病。目前,台灣的防疫政策仍然是全面施打不活化疫苗,並以血清中和試驗(serum neutralizing test, SN test)來評估免疫動物獲得中和抗體保護力的情形。然而,SN test耗時、成本高,且需在嚴格的負壓實驗室內操作。近期的研究指出,大多免疫動物的血清中以抗Site 2抗體為主。因此,我們希望以類病毒空殼蛋白(virus-like particles, VLP)和抗Site 2單源抗體(monoclonal antibody, MAb)建構阻斷型酵素連結免疫吸附試驗(blocking enzyme-linked immunosorbent assay, bELISA),並評估是否可取代SN test。VLP的製備以哺乳類細胞表現系統-transient expression assay搭配共轉染策略製造,並經過蔗醣梯度離心(sucrose gradient centrifugation)及sandwich ELISA等實驗間接確定VLP構型。為了從本實驗室已製備的41株MAbs中挑選出抗Site 2抗體,本研究採用單點突變(knock-out mutagenesis)的方式,以免疫螢光染色(immunofluorescence assay, IFA)和indirect ELISA找出可以辨識VLP但無法辨識Site 2單點突變VLP(mutated VLP, mVLP)之MAbs。配合中和抗體力價檢測結果,有6株抗Site 2抗體被篩選出來。經過sandwich ELISA以及少量樣品測試(實驗豬隻血清和臨床檢體)之bELISA,挑選S11E-9為最佳tracer完成bELISA的建構。zh_TW
dc.description.abstractFoot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals worldwide. Serum neutralization test (SN test), a gold standard for evaluating the protection rate against FMDV, is still performed for disease control in Taiwan. However, SN test is laborious, expensive and requires a high-containment biosafety lab. Based on the current study on vaccinated animals, antigenic site 2 of FMDV is the most immuno-dominant neutralizing site. We aim to establish a blocking ELISA (bELISA) based on FMD virus-like particles (VLPs) and site 2 monoclonal antibody (MAb) to detect antibodies against site 2 from vaccinated animals and replace the SN test. VLPs were expressed by eukaryotic transient expression assay with co-transfect strategy and examined by sucrose gradient centrifugation accompanied with sandwich ELISA. For mapping MAb against site 2 from 41 anti-FMDV MAbs prepared previously, we performed knock-out mutagenesis with VLPs and mVLPs (site 2 mutated) by immunofluorescence assay (IFA) and indirect ELISA. Combined with neutralization assay, results indicated that 6 MAbs recognized site 2. Based on the results of sandwich ELISA and bELISA with experimental serum, S11E-9 was regarded as the best tracer to establish bELISA with VLPs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:20:09Z (GMT). No. of bitstreams: 1
ntu-105-R03629003-1.pdf: 6858832 bytes, checksum: 9b121e9cd52764df16681c1a0ddad2f4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目 錄
口試委員會審定書…………………………………………………….... i
誌謝....................................................................................... ii
中文摘要……………………………………………………………….. iv
英文摘要………………………………………………….…………….. v
第一章 序言…………………………………………….…………….. 1
第二章 文獻回顧……………………………………….…………….. 4
第一節 歷史背景…………………………………......…………..…… 4
第二節 口蹄疫病毒簡介………………...…...........................………….. 5
2-2.1 IRES特性介紹............................................................. 6
2-2.2 L protease特性介紹......................................................... 7
2-2.3 3C特性介紹................................................................... 7
2-2.4 病毒結構蛋白..................................................................... 8
第三節 FMD臨床症狀、傳播方式及檢法….....…......….............. 10
2-3.1 臨床症狀............................................................................. 10
2-3.2 傳播方式............................................................................. 10
2-3.3 檢測方式........................................................................ 11
2-3.3.1 病毒分離(Virus Isolation)......................................... 11
2-3.3.2 血清中和試驗(Serum Neutralization Test)............. 11
2-3.3.3 酵素連結免疫吸附試驗(Enzyme-Link Immunosorbent__
Assay, ELISA)...................................................... 12
2-3.3.4 反轉錄聚合酶連鎖反應(Reverse Transcription-Polymerase __
Chain Reaction, RT-PCR).............................................. 12
第四節 真核細胞表現系統............................................................... 13
第五節 類病毒空殼蛋白........................................................................ 15
第六節 Epitope Mapping策略........................................................................ 18
2-6.1 Peptide-based approach......................................................... 18
2-6.2 Escape mutant assay............................................................... 19
2-6.3 Reduction of neutralizing titer........................................................... 20
2-6.4 Knock-out mutagenesis................................................................. 20
第三章 材料與方法………..……………………….……………….. 22
第一節 質體建構......................................................................... 22
3-1.1 pcDNA-VP2、pcDNA-P1、pcDNA-3C質體建構....................... 22
3-1.1.1 反轉錄作用........................................................................... 22
3-1.1.2 聚合酶鏈鎖反應(PCR)增幅VP2、P1、3C基因............. 23
3-1.1.3 切膠純化(Gel extraction)................................................... 24
3-1.1.4 Blunt-end ligation and transformation.................................. 24
3-1.1.5 Colony PCR........................................................................... 25
3-1.1.6 重組載體pJET-VP2、pJET-P1、pJET-3C之少量質體萃取. 26
3-1.1.7 重組基因置換至表現載體(pcDNA-3.1(+))...................... 27
3-1.2 pcDNA-P1點突變實驗.............................................................................. 28
3-1.3 pcDNA-P1_2A_m3C與pcDNA-P1_2A_3C質體建構................. 30
3-1.4 pcDNA-P1_2A_mIRES_3C質體建構............................................... 31
第二節 VLP表現及抗體特性鑑定................................................................... 32
3-2.1 Transient expression assay................................................................ 32
3-2.2 免疫螢光染色(Immunofluorescene assay, IFA)......................... 33
3-2.3 VLP共轉染策略最佳化................................................................... 34
3-2.4 VLP/mVLP抗原盤製作.................................................................... 34
3-2.5 Western blot....................................................................................... 34
3-2.6 Sucrose gradient centrifugation以及VLP Ag sandwich ELISA...... 35
3-2.7 VLP/mVLP Ag Indirect ELISA(ELISA-VLP/mVLP)................... 36
3-2.8 全病毒抗原盤-O/TW/97, O/Penghu/12製作................................... 37
第三節 建立Blocking ELISA...................................................................... 37
3-3.1 單源抗體腹水之抗體純化........................................................... 37
3-3.2 純化抗體之蛋白定量................................................................ 38
3-3.3 純化抗體之HRP標示作用實驗..................................................... 38
3-3.4 最佳化VLP Ag sandwich ELISA.................................................... 39
3-3.5 初步評估抗Site 2 MAb-HRP之應用............................................. 39
3-3.6 以少量口蹄疫中和抗體陽性與陰性血清樣品評估
Site 2 MAb-HRP.................................................................... 40
3-3.7 Q10E-3與Site 2 MAb彼此間的steric effect測試..................... 41
第四節 VLP生產策略比較.................................................................... 41
3-4.1 建立Stable cell line試驗................................................................ 41
3-4.2 Transient gene expression(TGE).................................................. 42
3-4.3 Transient expression assays與TGE搭配4種質體策略比較........ 42
第五節 其他實驗與生物材料製備.................................................................. 43
3-5.1 不活化病毒製備............................................................................. 43
3-5.2 勝任細胞製備.................................................................................. 44
3-5.3 大量質體DNA萃取...................................................................... 44
第四章 結果…………........………………………………………....... 46
第一節 以transient expression assay搭配共轉染策略製備VLP與mVLP... 46
4-1.1 RT-PCR增幅VP2、P1、3C gene.................................................. 46
4-1.2 pcDNA-VP2、pcDNA-P1、pcDNA-3C質體建構.......................... 46
4-1.3 優化3C質體轉染濃度..................................................................... 47
4-1.4 VLP/mVLP抗原盤製備.................................................................... 48
4-1.5 以Western blot確認P1被切割狀況................................................ 48
4-1.6 Sucrose gradient centrifugation-sandwich ELISA........................ 49
第二節 Site 2 MAbs及其他抗體特性鑑定................................................ 49
4-2.1 VLP/mVLP抗原盤IFA試驗(IFA-VLP/mVLP)........................... 49
4-2.2 VLP/mVLP Ag indirect ELISA試驗(ELISA-VLP/mVLP)............ 50
4-2.3 O/TW/97與O/Penghu/12全病毒抗原盤IFA試驗(IFA-O97/O12)
......................................................................................... 51
4-2.4 中和抗體力價試驗......................................................................... 51
第三節 Blocking ELISA檢測系統建立.......................................................... 52
4-3.1 Site 2 MAbs之抗體純化、定量與酵素標示(HRP conjugation)... 52
4-3.2 VLP Ag sandwich ELISA優化條件測試........................................ 52
4-3.3 初步評估抗Site 2 MAb-HRP之應用.......................................... 53
4-3.4 以少量口蹄疫中和抗體陽性與陰性血清樣品評估Site 2 MAb-HRP........................................................................................... 53
4-3.5 Site 1 MAb與抗Site 2 MAb彼此間的steric effect試驗................. 54
第四節 各項VLP生產策略評估.................................................................. 54
4-4.1 pcDNA-P1_2A_m3C及pcDNA-P1_2A_mIRES_3C質體建構..... 54
4-4.2 細胞株建立實驗結果..................................................... 55
4-4.3 Transient expression assays與transient gene expression(TGE)系 統比較.................................................................................. 55
第五章 討論…………........…………………………………….….. 57
第一節 以transient expression assay生產VLP與mVLP.............................. 58
第二節 抗體特性鑑定..................................................................... 60
第三節 Blocking ELISA建立........................................................ 63
第四節 不同表現系統及質體策略.................................................. 66
第五節 檢討..................................................................... 68
第六節 結論.................................................................. 71

參考文獻………………………………………………………….……103
附錄………………………………………………….…………….......114



圖目錄
Figure 1、口蹄疫病毒結構示意圖.............................................................................. 72
Figure 2、口蹄疫病毒之RNA序列圖........................................................................ 72
Figure 3、Cap dependent translation及Cap-independent translation示意圖.............. 73
Figure 4、FMDV IRES二級結構示意圖..................................................................... 74
Figure 5、O型口蹄疫病毒的中和抗體決定位示意圖............................................... 75
Figure 6、以PCR增幅VP2、P1、3C基因片段....................................................... 75
Figure 7、以限制酶XhoI與XbaI消化pJET-VP2、pJET-P1、pJET-3C與 pcDNA-3.1(+)........................................................................................... 76
Figure 8、VP2、P1、3C序列比對結果...................................................................... 77
Figure 9、3ABmC-C163G抗原盤測試....................................................................... 78
Figure 10、共轉染策略最佳化實驗(Transeint expression assays)......................... 79
Figure 11、共轉染實驗(Transient expression assays)之Western blot................... 80
Figure 12、Sucrose gradient centrifugation-sandwich ELISA..................................... 81
Figure 13、以mVLP-IFA鑑定篩選出疑似的抗Site 2抗體..................................... 81
Figure 14、以Indirect ELISA進行Knock-out mutagenesis實驗.............................. 84
Figure 15、O/Penghu/2012與O/TW/97之P1 amino acid sequence比對.................. 85
Figure 16、O/TW/97與O/Penghu/2012全病毒抗原盤IFA...................................... 86
Figure 17、VLP Ag sandwich ELISA條件測試........................................................ 88
Figure 18、以VLP Ag sandwich ELISA初步評估Site 2 MAb-HRP....................... 89
Figure 19、以少量血清樣品評估抗Site 2 MAb-HRP及Q10E-HRP....................... 90
Figure 20、以S11E-HRP建構之bELISA與SN titer的相關性.............................. 91
Figure 21、Q10E-3與Site 2單源抗體Steric effect測試....................................... 92
Figure 22、PCR增幅P1_2A、3C、m3C、His_3C、IRES等基因片................. 93
Figure 23、PCR增幅mIRES片段............................................................................ 93
Figure 24、以TGE製備VLP抗原盤經S11B-20 IFA結果...................................... 94
Figure 25、比較transient expression assays與TGE兩種哺乳類表現系統與四種 質體策略表現量......................................................................................... 95
Figure 26、BMAb C2 footprint.................................................................................. 96
Figure 27、Protomer示意圖........................................................................................ 97







表目錄
Table 1、41 MAbs panel特性鑑定............................................................................... 98
Table 2、共轉染策略最佳化實驗(Transeint expression assays)........................... 100
Table 3、純化抗體之蛋白濃度測定............................................................................ 100
Table 4、試驗檢體與臨床檢體之SN titer.................................................................. 101
Table 5、Site 2 MAb-HRP檢測實驗動物與臨床檢體所得R2和t值.............. 101
Table 6、Percentages of the t distribution(右單尾)................................................ 102
dc.language.isozh-TW
dc.subject阻斷型酵素連結免疫吸附試驗zh_TW
dc.subject口蹄疫zh_TW
dc.subject單源抗體zh_TW
dc.subjectSite 2中和抗原決定位zh_TW
dc.subject類病毒空殼蛋白zh_TW
dc.subjectantigenic site 2en
dc.subjectblocking enzyme-linked immunosorbent assayen
dc.subjectvirus-like particlesen
dc.subjectmonoclonal antibodiesen
dc.subjectfoot-and-mouth diseaseen
dc.title以抗Site 2單源抗體與口蹄疫類病毒空殼蛋白建構阻斷型ELISA對免疫動物進行血清學監控zh_TW
dc.titleDevelopment of a blocking ELISA based on site 2 monoclonal antibodies and foot-and-mouth disease virus-like particles for seromonitoring vaccinated animalsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊平政,林有良,張惠雯,王金和,陳啟銘
dc.subject.keyword口蹄疫,單源抗體,Site 2中和抗原決定位,類病毒空殼蛋白,阻斷型酵素連結免疫吸附試驗,zh_TW
dc.subject.keywordfoot-and-mouth disease,monoclonal antibodies,antigenic site 2,virus-like particles,blocking enzyme-linked immunosorbent assay,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201603059
dc.rights.note有償授權
dc.date.accepted2016-08-19
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved